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ABSTRACT

Twin support vector machine (TWSVM) is an efficient algorithm for binary classification. However, the
lack of the structural risk minimization principle restrains the generalization of TWSVM and the guaran-
tee of convex optimization constraints TWSVM to only use positive semi-definite kernels (PSD). In this
paper, we propose a novel TWSVM for indefinite kernel called indefinite twin support vector machine
with difference of convex functions programming (ITWSVM-DC). The indefinite TWSVM (ITWSVM) lever-
ages a maximum margin regularization term to improve the generalization of TWSVM and a smooth
quadratic hinge loss function to make the model continuously differentiable. The representer theorem
is applied to the ITWSVM and the convexity of the ITWSVM is analyzed. In order to address the non-
convex optimization problem when the kernel is indefinite, a difference of convex functions (DC) is used
to decompose the non-convex objective function into the subtraction of two convex functions and a line
search method is applied in the DC algorithm to accelerate the convergence rate. A theoretical analysis
illustrates that ITWSVM-DC can converge to a local optimum and extensive experiments on indefinite

and positive semi-definite kernels show the superiority of ITWSVM-DC.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machine (SVM) [1-4] is a machine learning
method based on the theory of statistical learning and the prin-
ciple of structural risk minimization (reducing the VC dimension
of learning machine and seeking the minimum sum of experience
risk and confidence risk). The learning strategy of SVM is “maxi-
mum margin”, that is, solving the optimal separating hyperplane
with the maximal margin, which gives impetus to have good gen-
eralization. In fact, SVM aims to address a constrained quadratic
programming (QP) problem. By introducing kernel learning, the
samples in low dimension feature space can be implicitly mapped
into the high dimensional feature space and the complexity of
inner product operations in SVM can be avoided [5]. Therefore,
it overcomes the problems of the “curse of dimensionality” and
“over-fitting” to a great extent. Since SVM was proposed, it has at-
tracted extensive attention for its superior performance [6-8] and
has been widely used in anomaly detection [9], image retrieval
[10], sequence-based prediction of protein [11], etc.

* Corresponding author at: School of Computer Science and Engineering, South-
east University, Nanjing, 210096, China.
E-mail address: hxue@seu.edu.cn (H. Xue).

https://doi.org/10.1016/j.patcog.2021.108195
0031-3203/© 2021 Elsevier Ltd. All rights reserved.

Jayadeva et al. proposed a twin support vector machine
(TWSVM) as a useful extension of the traditional SVM. TWSVM
generates two nonparallel hyperplanes by solving a pair of smaller-
sized QP problems instead of a single larger-sized QP problem [12].
Therefore, compared with SVM, TWSVM accelerates the learning
speed for the smaller-sized model and is more resilient to “Cross
Planes” datasets for the solution of two nonparallel hyperplanes.
However, TWSVM only takes into account the empirical risk min-
imization principle and lacks structural risk minimization princi-
ple which is a significant advantage of SVM. Some scholars solve
the problem by modifying the loss function to ensure the struc-
tural risk minimization principle and improve the generalization
performance [13,14]. However, in order to ensure the convexity
of the modified TWSVM to reduce the dual gap and satisfy Mer-
cer’s condition, the kernel in TWSVM is limited to positive semi-
definite (PSD) kernels. In fact, verifying the property of PSD for a
given kernel can be a challenging task beyond the ability of most
scholars. Moreover, indefinite kernels (i.e. kernel matrix contains a
mix of positive and negative eigenvalues) play an important role in
machine learning and real-world applications [15]. Some functions
such as hyperbolic tangent kernel are indefinite [16] and most ker-
nels as similarity measures directly utilized in real-world applica-
tions are indefinite [17]. Unfortunately, to the best of our knowl-
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edge, TWSVM has not exploited the study of indefinite kernels and
cannot elegantly deal with indefinite kernels.

However, indefinite kernel SVM (IKSVM) has been studied ex-
tensively and many algorithms have been proposed for dealing
with indefinite kernels in SVMs. One direction is “Kernel transfor-
mation” which applies direct spectral transformations to indefinite
kernels. These methods are represented by “Clip” (set all negative
eigenvalues to zero) [18], “Flip” (set negative eigenvalues to their
absolute value) [19] and “Shift” (add all eigenvalues with a positive
constant to make sure all eigenvalues are non-negative after shift-
ing) [20]. The other direction is “Reformulate problems” which is
solving the non-convex problem directly. However, these methods
may lose useful information in samples and have adverse effects
on modeling a function [21,22]. In 2017, Xu et al. [23] directly fo-
cus on the non-convex primal form of IKSVM by decomposing the
primal problem into two convex functions.

In this paper, we construct a bridge between TWSVM and indef-
inite kernel and propose a novel algorithm called indefinite twin
support vector machine with difference of convex functions pro-
gramming (ITWSVM-DC). In order to consider the confidence inter-
val which is ignored by TWSVM and be free from complex matric
inversion, we add a regularized item into TWSVM. We further in-
troduce the smooth quadratic hinge loss function to make the reg-
ularized TWSVM (ITWSVM) model continuously differentiable and
more resilient to indefinite kernels. Then, we analyze the convexity
of the proposed ITWSVM. In order to solve the non-convex prob-
lem existing in indefinite kernels, DC algorithm [24] is used to de-
compose the objective function into the subtraction of two convex
functions on ITWSVM. Therefore, ITWSVM can both use PSD and
indefinite kernels. A line search along the descent direction under
the Armijo type rule is used in the DC algorithm to accelerate the
convergence rate. We also implement a theoretical analysis to il-
lustrate that ITWSVM-DC can converge to the local optimum and
various experiments on both PSD and indefinite kernels show that
our algorithm is superior to the state-of-the-art algorithms.

This paper is organized as follows. Section 2 outlines the related
works including TWSVM and DC programming. Section 3 expounds
the mechanisms of the ITWSVM-DC in detail including the model
and convexity of ITWSVM with Representer Theorem, the decom-
position of the ITWSVM with DC, the convergence of ITWSVM-DC.
Section 4 is the experimental results and analysis. The superiority
and convergence of ITWSVM-DC are verified through experiments
on real-world and artificial datasets. Conclusions are given in the
last section.

2. Related work
2.1. TWSVM

For a binary classification problem, given a training set
(%,y),i=1,2,...,n where 8; € X and y; € {—1, +1}. n is the num-
ber of training samples and m is the dimension of training sam-
ples. There are n; samples belonging to class +1 and n, samples
belonging to class —1 in the n-dimensional real space X. For the
linear separable binary classification problem, the goal of TWSVM
is to find two non-parallel hyperplanes

x'w; +b; =0 and xIw,+b, =0. (1)

The model of TWSVM makes each hyperplane closer to the pat-
tern of one class and as far as possible from the other. The hyper-
planes are generally obtained by solving the following QP prob-
lems

(TWSVM1) min %(Aw1 +e;b1)T (Aw; + e;by) + crel§,

wy,by

st. —(Bwi+eb)+E>e, £>0. (2)
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(TWSVM2) mibn %(sz + e;b,)T (Bw; + e3b,) + el g,
wW;.Dby

s.t. (Aw, +eby) +np>e, 1 >0. (3)

where c¢; and c, are penalty variables, e; and e, are column vec-
tors of ones, & and n are slack variables and the matrices A in
R™>M and B in R™*™ are training sample matrices composed of
positive class and negative class respectively.

For non-linear problem, by using kernel functions, data samples
can be implicitly mapped from low-dimensional space to high-
dimensional feature space, thus transforming the linear inseparable
problem in low-dimensional space into a linear separable problem
in high-dimensional space. ¢(x) is defined as the mapping func-
tion from the input space X to the feature space H. K(x,z) is de-
fined as K(x,z) = ¢(x) - ¢(z). Generally, we use the Radial Basis
Function (RBF) as the kernel function.

By introducing the kernel function to TWSVM and constructing
matric C, ie, CT = [A B]T, the counterpart of the problem (2) and
(3) should be

1
(TWSVM1) min 5 (KA, CHuy +u1b)T(K(A, CT)uy + e1by) +crel§,
uy,by

st. (K(B.CHuy +eby) +£= e, £20. (4)

1
(TWSVM2) min 5 (KB, CMu, + e,b,)T (K(B,CT)uy + e3b,) + el 7,

st. (KA, CTu, +e1by) + 5> e;, 1> 0. (5)

where c¢; and ¢, are penalty variables, e; and e, are column vec-
tors of ones, and & and 7 are slack variables.
Take Eq. (4) for example, the Lagrangian of Eq. (4) is

1 2
L(uy, by, & o B) = 5 [K(A.Cyur +eabs | + cref€ + o (K(B, CHuy

+eyb; —§+€2)—I3T§v (6)

where « is Lagrangian multiplier.
By utilizing KKT Conditions, we can achieve

(TWSVM1) max ela - %uTV(STS)_lvra

st.0<a<cre, (7)
where S = [K(A,CT) e;],V =[K(B.,CT) e].
Similarly,
(TWSVM2) max efy - %yTs(vTv)‘lsTy
st. 0 <y <ce, (8)

where p is Lagrange multiplier similar to & in TWSVM1.

Thus, each class corresponds to a hyperplane, and the class
where the sample point belonging to is determined by the follow-
ing formula.

K@ T €Ty + by
Class (¥*) =argmin ——————,

=12
' JurK(C, My

where || is the absolute value.

(9)

2.2. DC programming

DC Algorithm (DCA) is widely applied to many non-
differentiable nonconvex optimization problems. In these prob-
lems, DCA is often adopted for global solutions and proved to
be more robust and more efficient than related standard meth-
ods [24]. The particular structure of DC programming has been
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permitted as a good deal of development both in qualitative and
quantitative studies [25].

The DC programming and DCA can address the non-convex
problem by decomposing it into two convex functions, which can
be written as:

f(x) =g(x) —h(x). (10)

where g, h are lower semi-continuous proper convex functions on
Rn
A DC program is in the form of

(Pye) a =inf{f(x) := g(x) — h(x) : x in X}, (11)

where g and h belong to I',(X) which is a set of all proper lower
semi-continuous convex functions on X.
By introducing conjugate functions, we have

inf{g(x) — h(x) : x in X}
inf{g(x) — sup{(x,y) —h*(y) :y in Y} : x in X}, (12)

where Y is the dual space of X. We state the dual problem of
Eq. (11)

(Dgc) o = inf{h*(x) — g"(x) 1y in Y}, (13)

where g*, h* denote the conjugate functions of g and h, respec-
tively.

The transportation of global solutions between (P;.) and (Dy.)
is expressed as:

1. If x* is an optimal solution of (P,.), then y* in dh(x*) is an
optimal solution of (D).

2. If y* is an optimal solution of (D), then x* in dg*(y*) is an
optimal solution of (Py).

The variables x and y satisfy

y e 0h(x), (14)

1]
I

X € 0g"(y). (15)

where y € dh(x) and x € ag*(y) are the sub-gradients [26] of h and
g* respectively. Then, DCA consists in the construction of two se-
quences {x,} and {y,}, which are candidates to be optimal solu-
tions of primal and dual programs respectively. Therefore, the se-
quences {g(x,) —h(x)} and {h*(y) - g*(yy)} are decreasing, {x;}
(resp. {y,}) converges to a primal feasible solution x* (resp. a dual
feasible solution y*) verifying local optimality conditions and x* in
ag*(y*), y* in dh(x*).

3. ITWSVM-DC
3.1. The regularized TWSVM

3.1.1. The model of the regularized TWSVM

In this section, we introduce a regularization item to TWSVM
to make sure that the model is structural risk minimization. We
modify the QP problems (4) and (5) with an additional “margin”
between the proximal hyperplanes (xw; +b; =0 (i = 1,2)) to en-
sure hyperplane of one class as far as possible away from the other
class. In order to make the regularized TWSVM (ITWSVM) contin-
uously differentiable and more resilient to indefinite kernels, we
introduce the smooth quadratic hinge loss function to our model.

More precisely, our QP problems are

.1 1
(ITWSVMT1) min 5w 1 + 5 (Aw, +e:b)T (Aw; +e1by) + 1 £E,
wy.by

st. (Bwy +exby) + &> ey, £>0. (16)
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1 1
(ITWSVM2) min 5 lwa® + 5 (Bw, + e,b,)T (Bw, + e;by) + o',
Wy,by
s.t. (Aw, +eby)+n>e;, n>0. (17)

From Eqgs. (16) and (17), the distance between proximal hy-
perplanes x"w; +b; =0 (i=1,2) and the bounding hyperplanes
xXTw;+b=+1 (i=1,2) is m (i=1,2). Therefore, the extra
term in the objective function implies to separate the proximal
and the bounding hyperplanes away as far as possible [27]. Fi-
nally, ITWSVM has the same advantages as the standard SVM, this
strategy leads our method to be more theoretically sound than the
original TWSVM. In the model of the ITWSVM, we also use the
smooth quadratic hinge loss function on slack term & and n to
make this model continuously differentiable. Then, we reformulate
Egs. (16) and (17) as unconstrained optimization problems:

. 1
(ITWSVM1) min y(wl,w1)+§||Aw1+elb1||2

wy,bq
+c1||max (0, e, + Bw; + e;by)||%.

= y(wi, wi)+ ) Vi((wy, X)) +by). (18)

i=1

. 1
(ITWSVM2) - min y (w, wy) + 5 || Bw, +eby|?

wy.by
+y||max (0, e; +Aw, + e;b,)]|%,

n
= YWy, wy) + ) Vo ((Wy. ;) + by). (19)

i=1
From Egs. (18) and (19), for each of ITWSVM, it can be divided
into two parts: the regularized term y(w,w) and loss function

term i V((w, ;) +b).
i=1

3.1.2. The regularized TWSVM with representer theorem

According to the Representer Theorem [28], we can ex-
tend (18) and (19) with kernel in Reproducing Kernel Hilbert
Spaces(RKHS) which can be rewritten as

(ITWSYM1) - miny £y, 1), + 3 Vi(fr () +bo). (20)
A i=1

(ITWSVM2)  miny (£, f5), + 3 Va(f2(x) +ba). (21)
27 i=1

Take ITWSVM1 for example, y (wq, w;) can be represented as
y{f1.f1), and V; is a loss function.

When the kernel is indefinite, (20) and (21) can be extended
in a wilder Reproducing Kernel Krein Spaces (RKKS) [29]. In RKKS,
the Representer Theorem is verified to still hold and the problem
of minimizing a regularized risk function can be expanded as

=) BKx. ), (22)

i=1
where the coefficient 8; € R and K is a kernel function in RKKS.
We can further attain the model of ITWSVM1 in RKKS:

n
(TWSVM1)  min yB' KB+ Vi(K'B+Db). (23)
-1 i=1
where B =[B1, B2, .....0al", K is the indefinite kernel matrix de-
rived from corresponding kernel function K;; = K(x;. x;), K' repre-
sents the ith row of K.
Note that:

2
v (K'ﬂ +h) =" (ZﬁjK(xi-Xj) + bl)
i=1

i=1 \ j=1
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ny+ny n 2
+ Z ¢y max O,1+Zﬂjl((xiqxj)+bl

i=n;+1 j=1
n n+n;

=Y (KB+bi)"+ Y cymax(0.K'B+by+1)°, (24)

i=1 i=ny+1

where n; is the number of samples belonging to class +1 and
n, is the number of samples belonging to class —1, n =n; +ny.
To distinguish B in ITWSVM1 and ITWSVM2, we set 8 as fB; in
ITWSVM1 and B, in ITWSVM2 respectively. The optimization prob-
lem by the scaling constant 1/2 is given by

(ITWSVM1) min 1;/ BIKB,
Bibi 2

1™ . 3 ny+ny i 5
+ Z(Z(Kﬂ‘ +by) +_Z cymax (0, K'B; + b1 +1)" ). (25)
i=1 i=ny+1
éw (f1®)+by)

(ITWSVM2)  min 1 YBIKB,
By.by 2

1{m ) ny +ny )
+5 (; (K'B, + b2)2 + i:,;] c;max (0,K'B, + by + 1)2) . (26)

i%vz (F2 () +by)

3.1.3. Analysis of convexity

In this section, we will present a theoretical analysis for the
convexity of ITWSVM. In order to better solve the problem, we also
divide ITWSVM into two parts: the regularized term %y ﬁTK B and
loss function term "I, V(f(x;) + b).

By introducing the convex optimization theory [30], we have
the convex Theorem 1.

Theorem 3.1. If f is twice differentiable, that is, its Hessian or second
derivative V2f exists at each point in demf, which is open. Then f
is convex if and only if domf is convex and its Hessian is positive
semidefinite: for all x € domf,

V2f=>0.
According to Theorem 3.1, we can deduce that

Proposition 3.1. The convexity of ITWSVM model is determined by
the regularized term %y ﬁTK B according to kernel K.

Proof. Take ITWSVM1 for example, for the regularized term
%yﬂ]TKﬂl, its Hessian or second derivative is K. Therefore, the
convexity is determined by kernel K. If K is positive semi-definite,
1y B{ K is convex and non-convex otherwise.

For the loss function term YP;V;(f;(x;)+by), we carry
out convex analysis for its two parts Zfz‘l (I(iﬂ1+b1)2 and

, 2 )
Z?;;”j] ¢ max (0, K'B, + by)" respectively.

n n

> (KB +b1) = 3 (KB (KB) +2b11C'8, + 17

i=1 i=1
nl T - . .
-y (,311(“1(1131 +2b,K'B, + b%). (27)
i=1
Its Hessian or second derivative is KT K.

ny+n ) )
> o max (0, K'B,+bi + 1)

i=n;+1
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ny+ny

= 3 cimax (0. (K'B,) (K'By) +2(by + DK'B, + (b1 +1)?)
i=n;+1
ny+ny o )
- clmax<0,ﬂf1("1(‘ﬂ1+2(b1+1)K‘ﬂ]+(b1+1)2>. (28)
i=ny+1
Its Hessian or second derivative is K" K'.
Noted that KTK'>0 is positive semi-definite, there-
fore, the quadratic form BYKTK'B, +2b,K'B, +b?  and

max (0, B1KTK B, +2(by + KB, + (by + 1)2) in loss func-
tion is convex. Then, the convexity of the two part of loss
function Y"1, (K'B, + by)? and Z;’;:l’]"j] c; max(0, K'B; + by)? can
be proved. Therefore, the loss function term Y%, V;(f;(x;) + by)
is convex.

Therefore, the convexity of ITWSVM1 is determined by the
regularized term %yﬂfl(ﬂl according to kernel K. Similarly, the
convexity of ITWSVM2 is determined by the regularized term

1y ﬂgK B, according to kernel K. O
3.2. ITWSVM with DC algorithm

In the last section, we analyze the convexity of ITWSVM. How-
ever, If the kernel K is indefinite, the ITWSVM is non-convex and
traditional methods for solving the dual problem of TWSVM is not
suitable for ITWSVM and there is a dual gap between the primal
problem and the dual problem.

In this section, we optimize the ITWSVM model obtained in
Section 3.1 with DC algorithm. Both PSD kernels and indefinite ker-
nel can be applied to our algorithm. ITWSVM model can be noted
as:

(ITWSVM1) ;nibn lyBIKB,
171
n . 2 ny+n . 2
+%<le (K'By+b1)" + S ¢; max (0.K'By +by+1) )
i—1 i=n;+1
(ITWSVM2) /rgnibn lyBiKB, :
2-U2
1 m i 2 ni+n i 2
+3| X (K'By+b2)" + X c;max(0,K'B, +by +1)

i=1 i=ny+1

(29)
The objective functions of ITWSVM are

fB) = %Vﬂ?Kﬂl
m : ny+n, X
+%<Z (KB, +b:)’ + Y c;max (0. KB, +by + 1)2)

i—1 i=n;+1

f(By) = Sy By KB,
1 ny i 2 n+n; i 2
+3( X (K'By+ba)" + 3 cymax(0,K'B,+by+1)
i=1 i=n;+1

(30)

The eigenspectrum of the indefinite kernel matrix can be noted
as K =UAUT, where U represents the orthogonal column eigen-
vector matrix and A represent the diagonal eigenvalue matrix re-
spectively. Due to the kernel matrix is indefinite, A contains both
positive and negative eigenvalues. After shifting the eigenspectrum
of the indefinite kernels, we can achieve several equivalent decom-
positions on Eq. (30). The basic idea adopted in this paper is to
decompose the objective function into f(B8) = g(B8) — h(B). Specif-
ically, the following two decomposition methods are adopted:

@B = 3 (vBIU (I + A)UTB, ) + évl (F1 (%) + by)
hi(By) = 3vBiU1 (i DUT B, ) 31
2(B,) = %(J/,Bguz(le N Az>u£ﬂz) X Valfa ) + bo)

h2(By) = 1y B3Ua(p2DUS B,
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2180 = 3 (yBIUNPIDUTB, ) + Vi (F1 ) + br)
ol mB) =3y B (o1 — ADUTB, , (32)
2B = 1 (YBU2(05DULB, ) + X Valfa () + Do)

h2(B,) = 1y B3Us (p41 — A)ULB,

oS

where

Z; Vi(f1(x) +b1) = %(ZL (Kiﬁ1 + b1)2

+ Z’?'ini] ¢ max (O,Kiﬂl +by + 1)2> (33)

1=n

and

S Vel +b) = 5 (S0 (KB, + ba)’

ny+ny i 2
+ Zi:mﬂ c;max (0, K'B, + by +1) ) (34)

have been proved convex in Section 3.1.3. {A} ?, are noted as
the eigenvalues in the eigenvalue matrix A1, {Aiz};?: are noted as
the eigenvalues in the eigenvalue matrix A,, o1 > —min({k}}L),
p2 = —min({A2}1 ), pf = max({A/}1 ), p} = max({A2}" ). The-
ses positive numbers 01, 03, p1 and o), are used to ensure the con-
vexity of these four functions g;(8;), h1(B1), £2(B) and h{(B,).

In order to avoid the repetitive complex solving process, we
use B to simultaneously represent $; in ITWSVM1 and f, in
ITWSVM2.

According to the theory of DC programming, we can get
the conjugate dual problem [31,32] of function f(B) : inf{f*(0) =
h*(@) — g*(0)}. According to Egs. (14) and (15), we can obtain:

0 c oh(B)

B edg () (35)
Function h(B) and g*(#) can be noted as:

h(B) =h(B") +(B-B.6') 36

g®=g@)+(0-0p")

in B, 0. In Eq. (36), 6" € 8h(B") and ﬁt“ € dg*(0"). In this way,
the problem is transformed into an iterative solution method to
the sequences {8’} and {6"}:

{B') = argmin [ 87" : ¢(B) - (B.6). B R

. (37)
{0[} —argmin 10" : h*(0) - <0, ﬁt+1>, 0c R”}
According to the research result of DC programming [33], the
model requires to optimize six parameters: f;, by, 61, 8,, b, and
0,, where the optimal iteration formulas of 8 and @ are:

6" < 9h(B") (38)
B! e argming pg(B) - (B.6°)

In each iteration, the sequence {8'} can generate one descent
direction. In order to accelerate the convergence rate of the algo-
rithm, the Armijo type rule along the descent direction is used to
search the smallest non-negative integer I; to further reduce the
value of the objective function:

FB* +d(B) = F(B™) — | d(B)|) . (39)
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3.3. Algorithm description

Algorithm 1 The pseudo code of ITWSVM-DC algorithm is given
in Algorithm 1.
Input:
D: the training set {;, y;}! ,
v: the step size of Armijo Rule (V > 0)
M, n: the parameters of Armijo Rule (0 < u <71 <1)
T: the maximize number of iterations
x*: the test sample
Output:
y*: the predicted class label of the sample =*
Process:
1: Initialize the kernel coefficient 3y and t = 0;
2: Implement DC decomposition for ITWSVM1: fi(81) = g1(B1) —
h1(81) and ITWSVM2: f,(B82) = £2(82) — h2(B2);
3: while t <T do
4:  for ITWSVMi i e {1,2} do

5: Obtain a solution for conjugate dual problem: BIF:
Vh(g}):
6: Solve convex optimization method ﬁit“ €

argming,gng(B!) — (B!, 6!) to obtain the solution B{*! of
the primal ITWSVMi problem,;

7: Calculate d(B;) = B! — 3t;

8: if |d(3)||* < & then

9: The model converges to the local minimum and Stop
iteration;

10: end if

11: Set vt =0 ;

12 while (8" +nkd(8)) < fi(B") - un't||d(8)| do

13: vt =nut

14: end while

15: Update the solution of ITWSVMi: B! = git! +vtd(8))

and the number of iterations t =t + 1;
16: end for
17: end while
K(z*T.CT)B;+b;|

18: return Class(z*) = argmin;_ |
Jerke.chs;

3.4. Convergence analysis

In this section, we implement a theoretical analysis for the con-
vergence of ITWSVM-DC. Like Section 3.2, we use unified § to rep-
resent B, and S,.

Theorem 3.2. If the sequence ' satisfies d(B) = B — B' =0, that
is, B* = B+ — B'. Then, for VB e U(B*. 8), we have

g(B) —h(B) = g(B") — h(B"). (40)

Proof. For the DC programming and DCA, we can decompose the
non-convex objective function into two convex function f(x) =
g(x) — h(x). If an additional term %xz(r > 0) is added to the con-
vex function g and h, it can make them strongly convex. Then

- = (800 + 5 ) - (h() + 5x). (41)
Set
G(x) = g(x)+%x2, (42)

H(x) = h(X)-‘r%XZ. (43)
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Then we introduce the functions to our objective function. For
the strongly convexity of function, we can get

T
G(ﬂt)ZG(ﬁH—l)+VG<ﬂt+])<ﬂt7ﬁt+]) ’ (44)
H(ﬁtﬂ) > H(ﬂt) + VH(ﬂt) (ﬁtﬂ _ ﬂt>T’ (45)
T

H(ﬁt) > H(ﬂt+l> +VH<ﬂ[+]><ﬂt _ﬂHl) . (46)
According to the iteration formula

0" < oh(BhH 0" = dh(B"H .
{ﬂ‘“ c argming (B — (B.0) "¢ " {agﬂf“ g M
V(') = 6" = Vh(B"). (47)

By substituting Eqs. (42) and (43) into Eqs. (44) and (45) re-
spectively and combine Eq. (47), we have

2
@(B) —h(B)) — (B —h(B") = Hﬂ“l — B (48)

2

The equality holds if and only if tHB”l -p ” =0, which

means ITWSVM-DC can reduce the value of objective function in
2

B — Bl =0, ITWSVM-DC converges.

According to Eqs. (43) and (46), function h(B) is strongly convex
in R™. According to the theory of reference [34], we have O

each iteration. When r’

Theorem 3.3. A function f is strongly convex if and only if it is con-
tinuously differentiable and for any x,y € R", we have

(FO = Fm).x=y)=pulx-yI>. wn>o. (49)
Proof. According to Eq. (49), we have
<Vh(ﬂt) _ Vh(ﬂtﬂ)’ ﬂ[ B ﬂt+1> > T”ﬂ[ _ ﬁt+1

Substitute Eq. (47) into Eq. (50), we have

(Vg(ﬂtﬂ) _ Vh(ﬂrﬂ)’ﬂrﬂ _ ﬂt) < THﬂt _ ﬂHl

2
. (50)

2
<0. (51)

2
B — B =0, which

demonstrates that d(f) = ﬁ“] — B =0 is a descent direction for

the objective function f=g—h at ﬁt“.

Setting the optimal solution of the function as B*, when
d(B) = B — B =0, according to Eq. (47), we have Vg(8*) =
Vg(B ) = 6", that is 30 < 9g(B").

So the conjugate function g* of g at 8~ is

g(0) =sup{(B".0)—g(B")} =(B".0)-2(B). (52)

Similar to Eq. (52), V@ € R", the conjugate function h* of h at B*

The equality holds if and only if ‘L"

is

h*(8) = sup {(B".0) — h(B")} = (B".8) — h(B"). (53)
Combining Egs. (52) and (53), we have
g(B") —h(B) <h*(0) —g*(0). (54)

Due to @ = Vh(B), that is 360 € dh(B). the conjugate function h*
of hat B is

h*(8) = sup {{B.6) — h(B)} = (B.6) — h(B). (55)

Similar to Eq. (55), V@ € R", the conjugate function g* of g at 8
is

g (0)=sup{(B.0)-g(B)} = (B.0)—g(B). (56)
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Combining Eqgs. (55) and (56), we have

g(B) —h(B) = h*(0) —g*(0). (57)
According to Egs. (54) and (57), we obtain
g(B) —h(B) = g(B") —h(B"). (58)

Therefore, the function converges to the optimal solution

p. O
3.5. ITWSVM-DC for multi-class classification

In this section, we use “one-versus-rest” strategy for multi-
class ITWSVM-DC [35]. For a K-class classification problem, the
approach generates K hyperplanes, one hyperplane for each class.
When constructing the kth hyperplane for the kth class, multi-class
ITWSVM-DC takes the kth class as the positive class and considers
the rest classes as negative class to construct an ITWSVM-DC-type
QP Problem. Each QP problem of multi-class ITWSVM-DC is trained
on all samples and generates one hyperplane. In the stage of pre-
diction, multi-class ITWSVM-DC calculates the distances between
the new sample and these hyperplanes. Then, multi-class ITWSVM-
DC signs the new sample to the class corresponding to the hyper-
plane that the new sample is closest to. For a K-class classification
problem, the model of multi-class ITWSVM-DC for the kth hyper-
plane is written as follows:

. .1 T _l n . 5 N4y ) 3
fnin j)’ﬂkKﬂk t5 (Z (K'B+b)" + > cemax(0,K'B+by)" .
ko Pk i=1 i=m+1

(59)

where B, and b, are the parameters of the kth separating hyper-
plane, ¢, is the penalty parameter. Then the multi-class ITWSVM-
DC model can be optimized with DC algorithm as described in
Section 3.2.

4. Experiments results and analysis

In this section, all algorithms are implemented in Python 3.6.5
on a PC with an Intel i5-8300H quad core processor, 8 GB RAM
and Microsoft Windows 10.

4.1. Experimental setup

We present experimental results of our algorithms on UCI
datasets and IDA datasets to verify the effectiveness of our algo-
rithms. We adopt the grid search method to optimize the parame-
ters. We choose sigmoid kernel and Radial Basis Function (RBF) as
kernel functions to compare our ITWSVM-DC with other methods
respectively. The definition of kernel functions (sigmoid kernel and
RBF kernel) is given by

K(x,z) = tanh (y (x,2) + 0) (60)
and
K(x.z) = exp (—y lx—2||?) (61)

respectively. The regularization term parameter, the parame-
ters in sigmoid and RBF kernels and penalty parameters in
SVMs and TWSVMs are selected by grid search from the set
{276,275,... 26},

In the experiments, twenty real-world datasets are used for
training models. Tables 1 and 2 gives a brief description of the
used twenty datasets. Among them, the diabetis dataset are IDA
benchmark dataset, and the other nineteen datasets are UCI bench-
mark dataset.

For all the datasets, we randomly divide the samples into two
non-overlapping training and testing sets which contain almost
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Table 1 half of the samples in each class. The processes are repeated ten
Description of the datasets for binary classification. times to generate ten independent epochs for each dataset, and
- - then the mean classification accuracies, the standard deviations
Datasets Number of samples ~ Number of dimension .. .
and training time are reported.
3‘115“;'13“ 690 14 In order to reflect the characteristics of different algorithms and
br(:;st ;33 g validate the performance, we perform experiments to compare our
cryotherapy 90 6 prf)posed regularized TWSVM (ITWSVM) and ITWSVM-DC with the
customers 440 7 original TWSVM and several state-of-the-art IKSVMs, they are:
haberman 306 3 . . . .
heart 270 13 o Clip: Treat all negative eigenvalues as noise and replace them
liver 345 6 with zero.
g;z}:ng Zgg ?2 e Flip: Flip the sign of negative eigenvalues in K so as to form a
1 .
voting 435 16 PsD kgrnel matrix. . S .
wpbc 198 33 o Diffusion [36] : Consider data distribution when computing
diabetis 768 8 pairwise similarity.
o Shift: Add a constant to all eigenvalues to make sure all the
eigenvalues are non-negative.

Eab'e,zt_ ¢ the datasets f lti-class classificati o IKSVM-DC: Introduce DC programming into the solution of
it il IKSVM, which greatly improves the classification accuracy of
Datasets Number of samples Number of dimension Number of classes the model.
breast-tissue 106 9 6
glass 214 9 6 4.2. Experimental results on binary classification datasets
iris 150 4 3
seeds 210 7 3 . . . . .
balance 625 4 3 ' First, we perform 'experlments on s%gmmd.kernel'whlch can be
soybean 47 35 4 viewed as one prominent representative of indefinite kernel. we
wine 178 13 3 compare our algorithm with Flip, Diffusion, Shift and Clip which

are common forms of SVMs for solving indefinite kernel. We also
Table 3

The classification accuracy (mean + standard deviation) and training time of binary classification of various algorithms when us-
ing the sigmoid kernel. /0 indicates whether the ITWSVM-DC is statistically superior/inferior to the compared models (pairwise
t-test at 0.05 significance level).

Datasets Flip Diffusion  Shift Clip TWSVM  ITWSVM  IKSVM-DC  ITWSVM-DC
australian mean(%) 85.68¢  76.41e 86.81 85.59¢  82.23e 86.96 86.75 87.39
+std(%) 1.44 14.23 1.25 1.46 2.33 0.64 0.64 0.76
time(s) 0.61 0.58 0.64 0.44 0.89 0.38 2.85 5.94
blood mean(%) 76.82e¢  77.59e 77.59¢  77.09¢  78.48 79.79 78.61 79.89
+std(%) 1.54 1.29 1.13 1.39 1.74 1.14 1.44 1.24
time(s) 2.64 0.60 0.70 4.14 0.71 0.37 3.54 5.77
breast mean(%) 74.46e  75.90e 74.75¢  73.24e  70.79e 77.70 76.76e 78.56
+std(%) 2.94 1.86 1.26 242 2.85 243 1.25 2.15
time(s) 0.14 0.12 0.17 0.14 0.14 0.09 0.71 1.08
cryotherapy  mean(%)  85.78 77.11e 86.00e  86.44 88.00 89.33 88.67 90.22
+std(%) 4.99 16.27 3.73 5.01 3.87 3.27 5.11 4.12
time(s) 0.05 0.05 0.10 0.06 0.13 0.05 0.17 0.52
customers mean(%) 89.18¢  88.64e 76.27¢  89.86e  88.64e 92.18 91.55 92.23
+std(%) 0.88 1.97 2.63 1.11 1.36 1.25 1.24 1.08
time(s) 0.26 0.25 0.27 0.41 0.26 0.14 1.48 2.36
haberman mean(%) 74.31 74.64 73.53e¢  7294e  65.29 76.47 75.29 77.06
+std(%) 3.09 3.17 3.25 3.55 22.07 3.78 4.12 3.55
time(s) 0.16 0.14 0.15 0.20 0.19 0.09 0.76 1.28
heart mean(%)  84.22 68.74¢ 82.96 84.30 80.44¢ 84.22 83.11 84.52
+std(%) 2.25 10.17 2.37 231 2.07 1.45 3.05 1.12
time(s) 0.13 0.13 0.14 0.13 0.22 0.08 0.72 1.06
liver mean(%) 66.88¢  61.56e 61.73¢  63.99¢  58.55e 70.98 61.73¢ 71.27
+std(%) 2.65 2.82 3.53 4.43 2.94 2.52 3.95 2.88
time(s) 0.17 0.25 0.17 0.17 0.08 0.10 1.09 1.41
pima mean(%)  75.68e  71.51e 74.82¢  76.33¢  66.98e 77.84 77.45 77.97
+std(%) 2.03 2.81 1.36 1.67 2.54 1.47 1.43 1.53
time(s) 0.65 0.64 0.62 0.58 0.36 0.38 4.18 6.68
planning mean(%) 71.10e  71.10e 7121e¢ 7132 71.10 71.10 71.10 7143
+std(%) 3.22 3.22 3.18 3.31 3.22 3.22 3.22 3.15
time(s) 0.09 0.09 0.08 0.09 0.09 0.07 0.42 0.80
voting mean(%)  96.54 91.49¢ 93.56e  95.85 96.32 96.78 96.31 97.47
+std(%) 3.91 4.25 4.20 4.34 2.77 4.02 4.29 3.15
time(s) 0.63 0.65 0.65 0.44 0.84 0.38 4.67 7.13
wpbc mean(%)  77.98 77.58 76.06e  78.08 77.17 78.99 77.07 79.80
+std(%) 2.51 2.55 2.39 2.67 2.13 3.02 3.23 3.29
time(s) 0.09 0.09 0.09 0.10 0.11 0.06 0.34 0.81
diabetis mean(%) 75.89¢  68.05e 74.58¢  76.77¢  66.09e 78.52 78.10 78.67
+std(%) 1.96 4.49 2.05 1.73 3.29 1.38 1.40 1.25
time(s) 0.61 0.58 0.65 0.54 0.73 0.35 4.09 6.17
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Fig. 2. The binary classification accuracy of various algorithms when using the RBF kernel.

compare our ITWSVM-DC with IKSVM-DC which is the state-of-
the-art algorithm. To better illustrate performance of TWSVM with
indefinite kernel, we compare our algorithm with the original
TWSVM to demonstrate that directly using indefinite kernel is not
favorable. For RBF kernel which is the prominent representative of
PSD kernels, the kernel spectra of Flip, Shift, Clip and Diffusion do
not need to transform and here we use original SVM as one com-
parison of our algorithm. We also compare our algorithm with the
original TWSVM, ITWSVM and IKSVM-DC to test the robustness of
our algorithm.

Tables 3 and 4 are the classification accuracies and training
time of different algorithms when using the sigmoid kernel and
RBF kernel respectively. The mean and standard deviation (std) of
various algorithms are used to validate the accuracy of experimen-
tal results. Specially, when one algorithm is superior to all com-
pared algorithms on one dataset, the accuracy of the algorithm
is highlighted in bold. Furthermore, to statistically measure the
performance differences of compared algorithms, we conduct pair-
wise t-test at 0.05 significance level between these algorithms. The
maker /o is shown when the ITWSVM-DC is statistically supe-
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Table 4

The classification accuracy (mean =+ standard deviation) and training time of bi-
nary classification of various algorithms when using the RBF kernel. e/c indicates
whether the ITWSVM-DC is statistically superior/inferior to the compared models
(pairwise t-test at 0.05 significance level).

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC
australian mean(%) 86.78¢ 83.71e¢ 86.99e 87.04¢ 87.97
+std(%) 0.82 2.26 0.70 0.83 0.82
time(s)  0.28 0.49 0.31 2.49 5.81
blood mean(%) 78.88 78.85 79.73 79.20 80.05
+std(%) 1.51 1.49 1.28 1.10 1.33
time(s) 1.68 0.46 0.37 2.74 5.29
breast mean(%) 76.69 72.73¢ 77.70 77.41 78.42
+std(%) 2.07 2.15 2.30 1.58 2.57
time(s)  0.06 0.11 0.08 0.60 1.08
cryotherapy mean(%) 91.33 89.56 90.89 90.44 91.78
+std(%) 3.06 2.64 3.51 4.10 3.98
time(s)  0.03 0.06 0.05 0.22 0.42
customers  mean(%) 91.91 86.91e 91.14 90.68 91.55
+std(%) 1.46 3.29 1.60 1.34 1.15
time(s)  0.10 0.41 0.14 2.10 217
haberman  mean(%) 74.51 75.56 76.01 75.10 76.01
+std(%) 3.46 3.07 3.74 3.82 3.73
time(s)  0.30 0.16 0.09 0.63 1.31
heart mean(%) 85.11 82.15¢ 85.04 84.81 85.93
+std(%) 2.26 1.86 1.27 2.66 1.05
time(s)  0.06 0.11 0.08 0.48 0.89
liver mean(%) 72.83 65.32¢ 72.02 70.58¢ 73.24
+std(%)  1.32 2.05 1.27 1.14 1.49
time(s)  0.08 0.31 0.11 0.61 1.46
pima mean(%) 78.31 73.54e 78.57 77.81 78.75
+std(%) 1.45 1.68 1.54 1.81 1.37
time(s) 0.27 0.71 0.36 3.52 6.13
planning mean(%) 72.64 7297 72.86 72.86 73.19
+std(%) 3.20 2.92 3.22 3.03 2.96
time(s) 0.04 0.09 0.06 0.33 0.82
voting mean(%) 9746 96.77 97.24 96.54 97.00
+std(%) 3.18 3.47 3.07 3.90 3.28
time(s)  0.27 0.41 0.35 3.19 591
wpbc mean(%) 79.90 78.89 79.49 78.79 79.80
+std(%) 2.98 3.42 3.50 3.38 3.26
time(s)  0.05 0.08 0.06 0.40 0.80
diabetis mean(%) 75.89e 73.65¢ 79.17 78.10e 79.40
+std(%) 1.96 1.57 1.22 1.40 0.90
time(s)  0.26 0.70 0.35 4.02 5.92

rior/inferior to the compared algorithms. Otherwise, no maker is
given.

From Tables 3 and 4, it is obvious that due to the introduc-
tion of the regularized term for ITWSVM which can be viewed
as an implementation of the structural risk minimization princi-
ple, the classification performances of ITWSVM are significantly su-
perior to the original TWSVM. From Table 3, when using the sig-
moid kernel, the performance of TWSVM is not favorable in many
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Table 6
The rank of various algorithms on binary classification datasets when using the
RBF kernel.

Datasets SVM  TWSVM  ITWSVM  IKSVM-DC  ITWSVM-DC
australian 4 5 3 2 1
blood 4 5 2 1
breast 4 5 2 3 1

2 5 3 4 1
cryotherapy
customers 1 5 3 4 2
haberman 5 3 1 4 1
heart 2 5 3 4 1
liver 2 5 3 4 1
pima 3 5 2 4 1
planning 5 2 3 3 1
voting 1 4 2 5 3
wpbc 1 4 3 5 2
diabetis 4 5 2 3 1
Avg. 2.9 4.5 2.5 3.7 1.3

datasets, which indicates that directly using indefinite kernel for
TWSVM may lose useful information for non-convex problems. In
these SVM methods for indefinite kernels (Flip, Diffusion, Shift,
Clip, IKSVM-DC), the performance of IKSVM-DC algorithm is bet-
ter than that of the IKSVMs which employ the methods of spec-
trum transformation in many cases, which means that the intro-
duction of DC programming plays a significant role in solving non-
convex problems and improves the performance of the model. It
is worth noting that, in sigmoid kernel settings, our ITWSVM-DC
outperforms all the algorithms on all binary classification datasets
and is statistically significantly superior to compared algorithms in
most cases, which indicates that the proposed ITWSVM-DC algo-
rithm is effective and can significantly improve the classification
accuracy of the algorithm when using indefinite kernels. It means
that ITWSVM-DC can not only make full use of the advantages
of TWSVM and hold the structural risk minimization in SVM but
also effectively apply DC algorithm to solve non-convex problems
caused by indefinite kernels. Therefore, our algorithm can always
achieve the best result and successfully employ indefinite kernels
to TWSVM. From Table 4, in RBF kernel settings, our proposed
ITWSVM still outperforms the original TWSVM. The performance
of IKSVM-DC is not particularly favorable and stable while our
ITWSVM-DC performs robustly and achieves the highest average
accuracy for binary classification datasets. The results demonstrate
that our method performs outstandingly in terms of PSD kernels
and indefinite kernels.

In order to show the classification effect of each algorithm more
clearly, Figs. 1 and 2 show the performances of compared algo-

Table 5

The rank of various algorithms on binary classification datasets when using the sigmoid kernel.
Datasets Flip  Diffusion  Shift Clip TWSVM ITWSVM  IKSVM-DC  ITWSVM-DC
australian 5 8 3 6 7 2 4 1
blood 8 5 5 7 4 2 3 1
breast 6 4 5 7 8 2 3 1

7 8 6 5 4 2 3 1

cryotherapy
customers 5 6 8 4 6 2 3 1
haberman 5 4 6 7 8 2 3 1
heart 3 8 6 2 7 3 5 1
liver 3 7 5 4 8 2 5 1
pima 5 7 6 4 8 2 3 1
planning 6 6 3 2 6 6 6 1
voting 3 8 7 6 4 2 5 1
wpbc 4 5 8 3 6 2 7 1
diabetis 5 7 6 4 8 2 3 1
Avg. 5.0 6.4 5.7 4.7 6.5 24 4.1 1.0
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Table 7
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The classification accuracy (mean =+ standard deviation) and training time of multi-class classification of various algorithms
when using the sigmoid kernel. e/o indicates whether the ITWSVM-DC is statistically superior/inferior to the compared models

(pairwise t-test at 0.05 significance level).

Datasets Flip Diffusion  Shift Clip TWSVM  ITWSVM  IKSVM-DC  ITWSVM-DC
soybean mean(%) 98.70e  91.30 99.57 98.70 99.57 99.57 99.57 99.57
+std(%) 1.99 9.91 1.30 1.99 1.30 1.30 1.30 1.30
time(s) 0.08 0.08 0.09 0.10 0.10 0.11 0.58 0.82
breast- mean(%)  40.75¢  40.94e 46.79¢  37.17¢  60.00 61.70 60.57 61.32
tissue +std(%) 4.40 9.99 7.54 10.23 5.46 7.55 5.56 5.08
time(s) 0.17 0.18 0.18 0.21 0.17 0.17 1.77 1.80
iris mean(%)  65.60e  70.40e 86.53¢  66.13¢  94.27 96.40 95.20 96.40
+std(%) 7.00 4.29 4.15 4.59 2.39 2.15 2.25 2.07
time(s) 0.13 0.13 0.12 0.14 0.13 0.18 1.13 1.36
wine mean(%)  91.35 68.99¢ 97.30 89.10e  94.61e 96.07 95.73 96.74
+std(%) 16.65 10.47 1.25 6.95 2.06 2.20 235 137
time(s) 0.12 0.13 0.12 0.14 0.12 0.11 0.94 1.26
seeds mean(%)  70.95e  47.52e 83.62¢  70.19¢  90.29 90.76 90.76 90.95
+std(%) 9.43 18.44 5.50 7.92 2.12 0.86 1.05 1.06
time(s) 0.14 0.14 0.14 0.18 0.17 0.22 1.26 1.30
glass mean(%)  49.81e¢  48.69e 52.90e  46.92e¢ 61.40 60.84 58.69 63.46
+std(%) 3.37 5.21 5.64 4.34 3.34 4.15 6.13 3.75
time(s) 0.29 0.32 0.29 0.51 0.37 0.34 2.74 291
balance mean(%) 86.71e  87.12e 86.87¢  86.93e¢  87.00e 93.67 91.92 92.59
+std(%) 1.21 1.16 1.34 1.15 0.72 1.43 1.18 1.18
time(s) 0.64 0.77 0.63 0.70 0.76 0.57 6.49 7.23

Table 8

The classification accuracy (mean + standard deviation) and training time of multi-
class classification of various algorithms when using the RBF kernel. e/o indicates
whether the ITWSVM-DC is statistically superior/inferior to the compared models
(pairwise t-test at 0.05 significance level).

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC
soybean mean(%) 99.57 99.57 99.57 99.57 100.00
+std(%) 1.30 1.30 1.30 1.30 0.00
time(s)  0.09 0.08 0.09 0.43 0.61
breast- mean(%) 61.13 59.81 62.45 60.94 62.08
tissue +std(%) 7.41 6.48 5.69 5.91 4.42
time(s)  0.18 0.18 0.16 1.47 1.84
iris mean(%) 96.13  95.73 96.27 96.13 96.40
+std(%) 1.83 1.31 1.87 2.19 1.98
time(s)  0.12 0.11 0.10 1.06 1.13
wine mean(%) 97.98 97.19¢ 98.31 98.42 98.54
+std(%) 0.98 1.26 0.91 1.03 0.88
time(s) 0.14 0.12 0.13 1.01 1.54
seeds mean(%) 94.00 93.05 92.00 92.38 92.95
+std(%) 1.05 1.35 0.97 1.59 1.36
time(s) 0.14 0.11 0.11 1.25 1.68
glass mean(%) 68.69 66.17 67.48 68.41 68.31
+std(%) 3.60 3.07 3.49 4,71 4,35
time(s)  0.27 0.25 0.23 3.01 3.23
balance mean(%) 91.21e 8859  93.74 92.84 93.19
+std(%)  1.33 1.40 1.55 1.27 1.27
time(s)  0.59 0.69 0.45 7.23 7.42

rithms on different datasets with sigmoid kernel and RBF kernel
respectively.

For better illustrating the results of experiments, we use statis-
tical comparisons of classifiers-Friedman test. The null-hypothesis
is that all the algorithms perform the same and the observed dif-
ferences are merely random. The test results of each algorithm on
each dataset are obtained and can be sorted from good to bad. If
the test performances of the algorithms are the same, the score
order value is the same. Tables 5 and 6 show the ranks of the al-
gorithms in this paper.

The Friedman statistic is as follow:

12N

2
2_ 12N _kk+1)?
XF= k=)

1 .
Xj: NZ”‘J 7

(62)

We compare these k algorithms on N datasets and rl.j is the rank of
the ith of N datasets and the jth of k algorithms. In this section, N
is noted as 13 and k are 8 and 5 in sigmoid kernel and RBF kernel
settings respectively. The Friedman statistic is distributed according
to XFZ with k — 1 degrees of freedom. The original Friedman test is
too conservative, and now we usually use

_ (N=1)x?
C N(k—=1)— x?’

where XE can be attained from Eq. (62). F is distributed according
to F-distribution with k — 1 and (k — 1)(N — 1) degrees of freedom.
When the significance level is 0.05, according to Eq. (63), the value
of Fr of these classifiers is 20.5099 when using the sigmoid kernel,
which is bigger than the critical values of the F-test 2.1206. For the
RBF kernel, the value of F is 15.4239, which is also bigger than the

E (63)

Table 9

The rank of various algorithms on multi-class classification datasets when using the sigmoid kernel.
Datasets Flip  Diffusion  Shift Clip TWSVM ITWSVM  IKSVM-DC  ITWSVM-DC
soybean 6 8 1 6 1 1 1 1
breast- 7 6 5 8 4 1 3 2
tissue
iris 8 6 5 7 4 1 3 1
wine 6 8 1 7 5 3 4 2
seeds 6 8 5 7 4 2 2 1
glass 6 7 5 8 2 3 4 1
balance 8 4 7 6 5 1 3 2
Avg. 6.7 6.7 4.1 7.0 3.6 1.7 2.9 14

10
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Fig. 3. The multi-class classification accuracy of various algorithms when using the sigmoid kernel.
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Fig. 4. The multi-class classification accuracy of various algorithms when using the RBF kernel.

critical values of the F-test 2.5652. Therefore, the null-hypothesis is
rejected, which means that the performances of these algorithms
are different.

4.3. Experimental results on multi-class classification datasets

In this section, we perform experiments on multi-class classi-
fication datasets. Tables 7 and 8 are the classification accuracies
and training time of different algorithms when using the sigmoid
kernel and RBF kernel respectively. From Tables 7 and 8, it is ob-

1

viously that the classification performances of ITWSVM are signif-
icantly superior to the original TWSVM. From Table 7, in sigmoid
kernel settings, our ITWSVM-DC almost outperforms all the algo-
rithms on all datasets and is statistically significantly superior to
compared algorithms in most cases, which indicates that the pro-
posed ITWSVM-DC algorithm is effective and can significantly im-
prove the classification accuracy of the algorithm when using the
sigmoid kernel. Therefore, our algorithm can successfully employ
indefinite kernels to TWSVM and always achieve the best result
with indefinite kernels in multi-class classification setting. From
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(b) SVM
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Fig. 5. Comparisons of the decision boundary of different methods on the artificial dataset.

Tables 8, in RBF kernel settings, our ITWSVM-DC still achieves the
highest average accuracy for multi-class classification datasets. The
results demonstrate that our method performs outstandingly in
terms of PSD kernels and indefinite kernels no matter in binary
classification settings or multi-class classification settings. There-
fore, ITWSVM-DC is a robust and prominent algorithm and can ex-
cellently deal with problems in different situations.

In order to show the classification effect of each algorithm more
clearly, Figs. 3 and 4 show the performances of compared algo-
rithms on different datasets with sigmoid kernel and RBF kernel
respectively.

To statistically measure the significance of performance differ-
ence, Friedman test at 0.05 significance level is conducted on all
datasets. The null-hypothesis is that all the algorithms perform the
same and the observed differences are merely random. The test
results of each algorithm on each dataset are obtained and can
be sorted from good to bad. Tables 9 and 10 show the ranks of
the algorithms with sigmoid kernel and RBF kernel in the multi-
class classification settings respectively. When using the sigmoid
kernel, the value of F- of these classifiers is 18.5487, which is big-
ger than the critical values of the F-test 2.2371. For the RBF kernel,
the value of Fr is 2.8688, which is also bigger than the critical val-
ues of the F-test 2.7763. Therefore, the null-hypothesis is rejected,

12

Table 10
The rank of various algorithms on multi-class classification datasets when using
the RBF kernel.

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC
soybean 2 2 2 2 1

breast- 3 5 1 4 2

tissue

iris 3 5 2 3 1

wine 4 5 3 2 1

seeds 1 2 5 4 3

glass 1 5 4 2 3

balance 4 5 1 3 2

Avg. 2.6 4.1 2.6 2.9 1.9

which means that the performances of these algorithms are differ-
ent.

4.4. Experimental results with different indefinite kernels

Finally, we compare the performance of ITWSVM-DC with dif-
ferent indefinite kernels. Three indefinite kernels are selected for
comparison [37].

e Gaussian combination kernel:

K(x.2) = exp (~y1[1x - z|12) + exp (~y2x - 2|1*)
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Fig. 6. Comparisons of the decision boundary of different methods on the cryotherapy dataset.

+ exp (—y3||x—z||2), (64) of 0.05. The cryotherapy dataset is a real-world dataset. The t-
) ) SNE [38] method is used for visualizing the decision boundaries.
* Multiquadric kernel: Figs. 5 and 6 illustrate the decision boundaries of different meth-
ods on artificial and real-world datasets respectively with RBF ker-
K(x,2) =+/y|x— z||2 +c2, (65) nel. From Figs. 5 and 6, we can find that compared with other algo-
o Thin plate spline kernel:
K(x.2) =y llx =2l In (y |x - z|*). (66)  Table 1
The binary classification accuracy (mean =+ standard deviation) and training time of
The kernel parameters in these indefinite kernels are selected ITWSVM-DC with various kernels.

by grid search from the set {276,275, ... 26} Table 11 illustrates

. ) . . . . Datasets Gaussian combination Multiquadric Thin plate spline
the classification accuracy of ITWSVM-DC with different indefinite -
kernels on thirteen binary classification datasets. From Table 11, australian  mean(%) 87.01 87.16 86.32
. S . +std(%) 0.74 0.67 0.71
we can demonstrate that there is no certain indefinite kernel func- time(s) 4.94 531 586
tion which is superior to others in all cases. Experiments show that blood mean(%) 77.70 78.64 77.73
it is necessary for us to select the appropriate kernel function for +std(%) 1.26 1.41 1.61
ITWSVM-DC to achieve optimal performance according to specific time(s) 5.1 540 14.37
roblems breast mean(%) 76.33 76.62 75.97
p : Lstd(%)  1.72 2.64 1.88
time(s) 1.01 1.11 1.23
4.5. Decision boundary and convergence cryotherapy mean(%) 88.67 86.00 90.89
+std(%)  4.15 445 3.64
) o ) time(s) 0.48 0.50 1.10
We conduct the comparisons of the decision boundaries of customers  mean(%) 89.14 86.68 90.23
SVM, TWSVM, IKSVM-DC and ITWSVM-DC on artificial and real- +std(%)  2.61 1.61 1.73
world datasets. The artificial dataset is produced by two cross time(s) ~ 2.03 2.26 349
lines with Gaussian noise, which has zero-mean and the variance (continued on next page)

13
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Fig. 7. The convergence of ITWSVM-DC on 6 datasets.

Table 11 (continued)

Datasets Gaussian combination Multiquadric Thin plate spline
haberman  mean(%) 73.59 74.12 74.12
+std(%) 3.57 3.79 4.53
time(s) 1.17 1.20 1.56
heart mean(%) 84.52 83.70 84.30
+std(%) 1.38 1.55 1.93
time(s) 1.02 1.02 1.30
liver mean(%) 64.86 65.55 68.96
+std(%) 5.71 2.57 3.54
time(s) 1.32 1.49 3.17
pima mean(%) 76.64 76.93 77.73
+std(%) 1.43 2.00 1.28
time(s) 5.41 6.17 7.97
planning mean(%) 71.98 72.97 71.43
+std(%) 3.08 3.04 2.99
time(s) 0.75 0.76 0.88
voting mean(%) 94.93 94.70 95.62
+std(%) 3.96 3.42 4.45
time(s) 5.84 6.45 10.51
wpbc mean(%) 76.97 76.57 77.98
+std(%) 2.63 2.63 2.38
time(s) 0.76 0.70 1.03
diabetis mean(%) 76.61 78.41 77.47
+std(%) 1.89 1.10 1.79
time(s) 5.07 5.90 6.64

rithms, ITWSVM-DC can generate more reasonable decision bound-
aries and distinguish instances of different classes better.

In order to better illustrate the convergence of our algorithm,
we design experiments to verify it. The experimental results on 6
datasets (australian, breast, cryotherapy, customers, heart, pima) is
shown in Fig. 7. In Fig. 7, [d(B)II? = |d(Brr1 — B)|? is the value
of the solution sequence B, during the iterations. From Fig. 7, it is

obviously that the value |d(8) “2 gradually converges in few itera-
tions on the 6 datasets.

14

5. Conclusions

In this paper, we propose a new algorithm named indefinite
twin support vector machine with difference of convex functions
programming (ITWSVM-DC) which is the first time to employ in-
definite kernel to TWSVM. We directly focus on the primal prob-
lem of TWSVM instead of the dual form of TWSVM to avoid the ex-
istence of dual gap and the loss caused by dual form. By modifying
the objective function, a new regularized TWSVM (ITWSVM) comes
into being which can improve the generalization of TWSVM. By us-
ing the Representer Theorem in RKKS, we reconstruct the ITWSVM
and provide theoretical support for the indefinite TWSVM. After
analyzing the convexity of the proposed ITWSVM, DC program-
ming is introduced to solve the non-convex problem. A line search
along the descent direction at each iteration is adopted to find the
solution. Furthermore, experiments with sigmoid kernel have been
performed to prove the superiority of our algorithm with indefinite
kernels. Radial Basis Function kernel is also applied to demonstrate
the robustness of our algorithm. Extensive experiments demon-
strate that ITWSVM-DC is a robust and prominent algorithm and
can perform excellently in different situations.
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