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a b s t r a c t 

When facing discrete space learning problems, the traditional reinforcement learning algorithms often 

have the problems of slow convergence and poor convergence accuracy. Deep reinforcement learning 

needs a large number of learning samples in its learning process, so it often faces with the problems 

that the algorithm is difficult to converge and easy to fall into local minimums. In view of the above 

problems, we apply support vector machines classification to reinforcement learning, and propose an 

algorithm named Advantage Actor-Critic with Support Vector Machine Classification (SVM-A2C). Our al- 

gorithm adopts the actor-critic framework and uses the support vector machine classification as a result 

of the actor’s action output, while Critic uses the advantage function to improve and optimize the pa- 

rameters of support vector machine. In addition, since the environment is changing all the time in rein- 

forcement learning, it is difficult to find a global optimal solution for the support vector machines, the 

gradient descent method is applied to optimize the parameters of support vector machine. So that the 

agent can quickly learn a more precise action selection policy. Finally, the effectiveness of the proposed 

method is proved by the classical experimental environment of reinforcement learning. It is proved that 

the algorithm proposed in this paper has shorter episodes to convergence and more accurate results than 

other algorithms. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Statistical learning [1] is a theory that studies the rules of ma-

chine learning in small samples. The theory establishes a set of

new theoretical systems based on small sample statistic problem.

In the system, statistical inference rules not only consider the de-

mand of convergence, but pursue the best optimal results under

the condition of limited information can be used [2] . Support vec-

tor machine (SVM) [3–4] is a machine learning method based on

statistical learning theory and structural risk minimization prin-

ciple. Its learning strategy is ‘maximum margin’, that is, solving

the optimal separating hyperplane with the maximal margin. In

fact, it transforms a classification problem to a convex quadratic

programming problem (QPP). By introducing the kernel function,

SVM uses nonlinear conversion which can be applied to the non-

linear classification problem to map the training data into higher-

dimensional space and transform a nonlinear classification prob-

lem to into a linear classification problem in a high dimensional

space. It has many unique advantages in solving small sample,

nonlinear and high-dimensional pattern recognition problems. To
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 great extent, it overcomes the problems of ‘Curse of dimension-

lity’, ‘over-fitting’ and so on. Since SVM was proposed, it has at-

racted extensive attention because of its superior performance.

any experts and scholars have devoted to SVM and put forward

everal improved algorithms. In 2015, Gu et al proposed incremen-

al support ordinal regression (ISVOR) based on a sum-of-margins

trategy [5] . In 2016, Gu et al. put forward a robust regularization

ath algorithm for ν-Support vector classification ( ν-SvcRPath) to

void the exceptions and handle the singularities in the key matrix

6] . At the same time, Ding et al. put forward a variety of improved

lgorithms for support vector machines [7,8] . At present, SVM has

een successfully applied to many fields, such as pattern recogni-

ion [9] ,text classification [10] and so on. 

Reinforcement Learning (RL) is an important research direction

n the field of machine learning. Reinforcement learning learns the

est response mapping policy from the environment to actions by

epeated testing in the environment, so as to maximize a numer-

cal reward signal, which is a closed-loop problems because the

ctions studied by learning system influence its later inputs. In ad-

ition, the learner should try to find which actions could achieve

he most reward. As an important machine learning method, it

as been extensively studied. In 1989, Watkins [11] proposed a

odel-free off-policy reinforcement algorithm, called Q-Learning.

https://doi.org/10.1016/j.patrec.2018.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.04.012&domain=pdf
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ubsequently, Rummery and Niranjan proposed an on-policy re-

nforcement learning algorithm, named SARSA, which modified

-Learning and applying updates on-line during trials [12] . In

ecent years, the reinforcement learning has achieved a series

f important achievements [13–14] . For example, in 2015, Mnih

t al. proposed the improved Deep Q-network(DQN), which can

earn strategies directly from the high dimensional raw input data

hrough End-to-End reinforcement learning training. In 2016, Silver

t al. applied deep reinforcement learning to the game of Go and

chieved a 99.8% winning rate. However, in the face of small-scale

iscrete space problem, the traditional reinforcement learning al-

orithms are often faced with the problem of slow convergence

nd the insufficient convergence accuracy. While due to learn-

ng process requires a lot of learning samples, deep reinforcement

earning often faces with the problems that algorithm is difficult to

onverge and easy to fall into the local minimum. 

In order to solve the above problem that the traditional rein-

orcement learning algorithms are easy to fall into the local mini-

um and have slow convergence rates when facing discrete space

roblems. We combine the advantage actor-critic method with

upport vector machine classification after analyzing the charac-

eristics of support vector machine and the reinforcement learn-

ng. We use the results of support vector machine classification as

ctor’s action outputs, while Critic uses the advantage function to

mprove the choice of Actor’s actions. In addition, we use the gra-

ient descent method to optimize the parameters of support vector

achine since the environment is changing all the time in rein-

orcement learning, which is difficult to find a global optimal so-

ution for the support vector machines. So that agent can quickly

earn to get a more accurate action selection policy. Finally, the ef-

ectiveness of the proposed algorithm is verified by experiments. 

The rest of this paper is organized as follows. Section 2 de-

cribes the basic concepts of support vector machines and rein-

orcement learning. Section 3 makes a detailed description of the

ew algorithm. We combine support vector machines with advan-

age actor-critic(A2C), and propose an algorithm named advantage

ctor-critic with support vector machine classification(SVM-A2C).

xperimental results are given in Section 4 . Finally conclusions and

uture works appear in Section 5 . 

. Basic theories 

.1. Support vector machines 

Support vector machine (SVM) is a binary classification model,

ts mechanism is to find the optimal classification hyperplane,

hich can meet classification requirements. SVM can guarantee the

lassification accuracy of the hyperplane, at the same time, max-

mize the blank areas on either side of the hyperplane [15–16] .

hen kernel functions are applied to SVM, SVM can be used to

on-linear classification [17] . 

Given a training dataset ( x i , y i ) , i = 1 , 2 , · · ·, l, x ∈ R n , y ∈ { ±1 } in
eature space, the hyperplane is noted as ( ω · x + b ) = 0 . In order

o make the classification hyperplane correctly classify all samples

nd have a classification margin, the following constraints are re-

uired: 

 i ( ω · x i + b ) ≥ 1 , i = 1 , 2 , · · ·, l (1)

Thus, the problem of margin maximization can be defined as:

in 

ω,b 

1 

2 

‖ 

ω ‖ 

2 
2 (2) 

.t. y ( ω · x + b ) ≥ 1 , i = 1 , 2 , · · ·, l (3)
i i 
The dual problem of the primal problem can be obtained by

onstructing the Lagrange function: 

in 

α

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j 
(
x i · x j 

)
−

N ∑ 

i =1 

αi (4) 

.t. 

{ 

N ∑ 

i =1 

αi y i = 0 

αi ≥ 0 , i = 1 , 2 , · · ·N 

(5) 

here αi denotes the Lagrange multiplier. 

Then, we apply kernel function to SVM. For a non-linear prob-

em, kernel function can mapping the data in the original space to

 new space by a nonlinear transformation, then SVM can learn the

lassification model from the training data in the new space with

 linear classification method. Define φ( x ) as the mapping function

rom the input space X to the feature space H. Define K ( x, z ) as 

 ( x, z ) = φ(x ) · φ(y ) (6)

Then K ( x, z ) is a kernel function. Similar to formula (4) , the ob-

ect function of dual problem by introducing kernel function is as

ollows. 

 ( α) = 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j K( x i x j ) −
N ∑ 

i =1 

αi (7) 

Generally, we use the Gauss kernel function as the kernel func-

ion. 

 ( x, z ) = exp 

(
−‖ 

x − z ‖ 

2 

2 σ 2 

)
(8) 

Then, the classification decision function is given by 

f ( x ) = sign 

( 

N ∑ 

i =1 

α∗
i y i exp 

(
−‖ 

x − x i ‖ 

2 

2 σ 2 

)
+ b ∗

) 

(9) 

.2. Reinforcement learning 

Reinforcement learning sees learning as a trial process. In rein-

orcement learning, agent selects an action a acting on the environ-

ent s . After accepting the action, the environment state s changes

nto s ′ , and return a reward signal to the agent. Then the agent se-

ect the following action according to the reward signal [18] . 

In the reinforcement learning based on the value function, the

ost commonly used algorithm is the Q-learning algorithm. Q-

earning algorithm is a temporal difference (TD) method [19] . Its

terative updating formula is as follows: 

 ( s t , a t ) ← Q ( s t , a t ) + α
[ 

r t+1 + γ max 
a 

Q ( s t+1 , a ) − Q ( s t , a t ) 

] 
(10) 

In the formula, Q ( s t , a t ) is noted as the state-action value cor-

esponding to the t moment, α is learning step, r t+1 is the reward

alue from state s t to s t+1 . 

In the reinforcement learning based on the policy function, the

ost commonly used algorithm is the policy gradient algorithm.

ake the most classic algorithm, Reinforce [20] , as example, its up-

ating formula is as follows: 

← θ + α∇ θ log πθ ( s t , a t ) v t (11) 

Combining the algorithm based on the value function with the

lgorithm based on the policy function, we can obtain a new re-

nforcement learning algorithm: the actor-critic (AC) [21] . In AC,

ctor is based on policy selecting function to select a policy ac-

ording to the state, while Critic evaluates the current policy of

ctor and direct Actor to improve its policy. Actor-critic algorithm
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can combine a variety of different value function methods with di-

rect policy selection methods. Compared with the traditional policy

based reinforcement learning algorithm, it has faster convergence

speed. 

3. SVM-A2C algorithm 

Based on the characteristics of support vector machines and

reinforcement learning described in Section 2 , we combine sup-

port vector machine classification with advantage actor-critic (A2C)

[22] and propose a new algorithm named Advantage Actor-Critic

with Support Vector Machine Classification (SVM-A2C). 

3.1. Parameters update 

Before the algorithm running, it is necessary to preprocess the

state in the environment to make it become the data that can be

applied to the reinforcement learning algorithm [23–25] . There are

many ways to preprocess state data, and the most widely used

method is to translate it into a matrix. We define ψ( s ) as the state

data, which is the result after the preprocessing of the state s . 

Critic uses its advantage function to update itself. Compared

with the traditional TD method, using advantage function can eval-

uate the performance of the action more accurately. The update

formula of the state-action value Q ( ψ( s ) , a ) is shown in formula

(12) : 

Q 

(
ψ ( s ) , a 

)
← Q 

(
ψ ( s ) , a 

)
+ α

[ 
r + γ

max 

a 
Q 

(
ψ ( s ) 

′ 
, a 

)
− Q 

(
ψ ( s ) , a 

)] 
(12)

In SVM-A2C, the advantage function is defined as the advan-

tage of using the current action compared with other actions. Its

expression is shown in formula (13) : 

A 

(
ψ ( s ) , a 

)
= Q (ψ ( s ) , a ) −

∑ 

a ′ ∈A Q (ψ ( s ) , a ′ ) 
card(A ) 

(13)

Where card(A ) denotes the number of elements in action set

A of the agent. By formula (12) , (13) and the input state, we can

get the values of the advantage function of all actions in the ac-

tion space A corresponding to the current input state. In order to

train the support vector machine, we select the action that has the

maximum advantage value as the classified label corresponding to

the input state, and get a set of data (ψ ( s ) , y ) , y ∈ A . We use the

obtained data to update the parameters of the support vector ma-

chine. According to formula (7) and (8) , we can get the loss func-

tion: 

 ( α) = 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j K(ψ (s ) i , ψ (s ) j ) −
N ∑ 

i =1 

αi (14)

we use the Gauss kernel as the model kernel function. Specific def-

initions are as follows: 

K 

(
ψ (s ) i , ψ (s ) j 

)
= exp 

( 

−
∥∥ψ (s ) i − ψ (s ) j 

∥∥2 

2 σ 2 

) 

(15)

Since the environment is changing all the time in reinforcement

learning, it is difficult to find a global optimal solution for the sup-

port vector machines. Therefore, in SVM-A2C, we use gradient de-

scent method to optimize the parameters of support vector ma-

chine. According to formula (14) , we can obtain the partial deriva-

tive: 

δ = 

∂W ( αi ) 

∂ αi 

= 

N ∑ 

j=1 

α j y i y j K(ψ (s ) i , ψ (s ) j ) − 1 (16)

Then, we apply advantage functions to update support vector

machines. Since the advantage value of the selected action differs
rom those of other operations, we should not use an invariant

earning step to optimize the parameters of support vector ma-

hines. So we introduce the advantage value into the optimizing

rocess. We set β as the learning step factor, and take the prod-

ct of learning step factor and action advantage value as the sin-

le learning step to optimize the parameters of support vector ma-

hines. The update formula for αi is shown in formula (17) : 

i ← αi − βδ(ψ (s ) i , y ) (17)

Putting formula (16) into formula (17) , we can obtain the single

tep update value αi 

i ← αi − β

( 

N ∑ 

j=1 

α j y i y j K(ψ (s ) i , ψ (s ) j ) − 1 

) 

A (ψ (s ) i , y ) (18)

Actor chooses the action according to the current state. When it

hooses an action, in order to encourage the exploration and pre-

ent the model from falling into over-fitting, the ɛ -greedy method

s adopted to the action selection policy. Formula (19) gives an ac-

ion selection policy for Actor. 

 ← 

⎧ ⎪ ⎨ 

⎪ ⎩ 

sign 

(
N ∑ 

i =1 

α∗
i 
y i exp 

(
−‖ 

ψ (s ) −ψ (s ) i ‖ 

2 

2 σ 2 

)
+ b ∗

)
, 

W ith probability ( 1 − ε ) 
select a random action a ∈ A , With probablity ε 

(19)

In every update, based on the state of that time, Actor first se-

ects and executes actions according to formula (19) and gets feed-

ack from the environment; then Critic carries on the environment

valuation according to the formula (13) , and optimizes the param-

ters of the support vector machine through the formula (18) ac-

ording to the evaluation result. Finally Critic uses the optimized

esult to instruct Actor to improve its behavior selection policy, and

his completes a round of parameter updates. 

.2. Algorithm steps 

The steps of the SVM-A2C algorithm presented in this paper can

e summarized as follows 

step 1 Preprocess the states of the environment and convert it

into available status data. 

step 2 Receive the current state data ψ( s ). 

step 3 Actor select an action a by formula (19) according to the

received ψ( s ). 

step 4 Execute action a in the environment, get reward r and

next state data ψ( s ) ′ . 
step 5 Critic uses the data obtained in step 4 to update its pa-

rameters according to formula (13) . 

step 6 Critic forms a set of training data by combining the

current state data with its corresponding action which has

maximum advantage value. 

step 7 Adjust the parameter values of the SVM according to for-

mula (18) using the data obtained in step 6. 

step 8 Repeat step 2 ∼step 7. 

Algorithm 1 gives the pseudo code of the SVM-A2C algorithm. 

SVM-A2C uses non-linear support vector machines to select ac-

ions, so in every single step update, the update of single state

ill affect the action selection of other states, which makes the

lgorithm updates more efficiently and improves the convergence

peed of the algorithm. The introduction of the advantage value

akes the algorithm update take full advantage of each action, so

hat the algorithm has a more accurate convergence accuracy. 
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Fig. 1. The framework of reinforcement learning. 

Fig. 2. The general framework of actor-critic [19] . 

Fig. 3. The RandomWalk Problem. 
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Table 1 

The episodes of evaluated algorithms reaching to convergence. 

States Q Sarsa Sarsa( λ) A2C SVM-A2C DQN A3C 

7 5 5 3 3 3 7 4 

11 4 5 4 6 3 8 4 

15 6 8 12 6 3 16 10 

Table 2 

Average steps in 10 episodes after evaluated algorithms converged. 

States Q Sarsa Sarsa( λ) A2C SVM-A2C DQN A3C 

7 3.4 3.2 3.4 3.8 3.6 14.4 22 

11 5.2 5.6 5.6 5.6 5.2 30.1 51.4 

15 8.4 7.8 8 8.6 7.6 58.2 104.9 

Table 3 

The episodes of evaluated algorithms reaching to conver- 

gence. 

States Q Sarsa Sarsa( λ) A2C SVM-A2C 

7 4 4 3 4 3 

9 4 4 3 5 4 

11 4 5 4 6 3 

13 7 5 4 7 4 

15 6 8 12 6 3 

17 9 8 3 9 3 

19 10 10 9 9 3 

21 9 12 3 11 3 

23 11 9 7 9 3 

25 10 12 26 12 4 

27 23 15 5 14 5 

29 15 14 4 14 4 

Table 4 

Average steps in 10 episodes after evaluated algorithms con- 

verged. 

States Q Sarsa Sarsa( λ) A2C SVM-A2C 

7 3.4 3.2 3.4 3.8 3.6 

9 4 4.2 4.2 4.2 4.2 

11 5.2 5.6 5.6 5.6 5.2 

13 6.2 6.2 6.6 6.6 6.4 

15 8.4 7.8 8 8.6 7.6 

17 8.8 8.6 8.6 9.6 8.2 

19 10.4 10.4 9.8 10.4 9.6 

21 10.8 11.4 11.4 11.6 10.6 

23 11.6 12.2 12.6 12.2 11.6 

25 13.8 12.6 14 13.4 12.8 

27 14.8 14.2 14.6 14.2 14 

29 15.4 15.2 15.4 15.2 15 

n  

t  

t  

a  

r

 

c  

m  

s  

c  

d  
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a  

w
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T

 

fi  
. Experimental results 

.1. Experimental environment 

In order to verify the effectiveness of the proposed algorithm,

e use the standard test environment of reinforcement learning,

andomWalk [20] , to test the performance of the algorithm. Ran-

omWalk is a standard reinforcement learning problem in a dis-

rete space. Its diagram is shown in Fig. 3 . 

In the RandomWalk problem, the initial state is the position

f the middle point, the agent should explores in limited steps to

nd a path that can reach the target point, while the reward value

hould be as high as possible as well. Our environment is set as

ollows: when agent reaches the far left position, it gets the re-

ard value −10; when agent reaches the far right target point, an

pisode ends and Agent gets the reward value + 10. When agent

rrives at another location, the reward is 0. 

All algorithms were implemented in Python 3.6.1 and Tensor-

ow 1.2.1 environment on a PC with Intel i5-3317 U quad core pro-

essor, 10 GB RAM and Microsoft Windows 10. 

.2. Experimental results 

We first test on a small number of states, the testing algo-

ithms include Q-learning, Sarsa, Sarsa( λ), Advantage Actor-Critic

A2C), Asynchronous Advantage Actor-Critic (A3C), Deep Q-network

DQN) and SVM-A2C proposed in this paper. The experiments are

onducted under three conditions, in which state numbers are 7, 11

nd 15 respectively. In the experiment, our parameters are set as

ollows: the learning α rate β is set as 0.0 0 01, the Greedy factor

 is ε = 0 . 1 in ɛ -Greedy Policy; in Sarsa( λ), λ = 0 . 9 ; in DQN, the

eplay memory size N = 200 , batch size n = 32 , and replace the

arget network per 100 steps; in A3C, Agents performs an asyn-

hronous update every 10 steps. 

The experimental results are shown in Tables 1 and 2 . The

nitial parameters are generated randomly by logistic distribution

ith location equal to 0 and scale equal to 1. In order to elimi-
ate the random situation, we have carried out 10 experiments and

aken the average of the experimental results as the final results of

hese experiments. In our experiments, we define the convergence

ccuracy as the average steps in next 10 episodes after these algo-

ithms converge to the optimal solution. 

The experimental results show that although all the algorithms

an converge to the optimal solution, DQN is easy to fall into local

inima in face of the reinforcement learning problem in a small-

cale discrete space. It converges very slowly and the convergence

annot reach to a good result. At the same time, we can see that,

ue to the introduction of asynchronous method, the convergence

f A3C is not stable when facing the small discrete space problems

lthough the convergence speed of it is faster than that of DQN. So

e used other five algorithms to do the following experiments. 

We have carried out experiments on the five algorithms with

welve states from 7 to 29. The experimental results are shown in

ables 3 and 4 . 

The accumulation of steps required for the convergence of the

ve algorithms in 12 cases is shown in Fig. 4 . The accumulation of



34 Y. An et al. / Pattern Recognition Letters 111 (2018) 30–35 

Algorithm 1 SVM-A2C. 

Preprocess the states of the environment 

Initialize Critic evaluation function and support vector machine model 

Repeat(for each episode): 

Initialize s 

Repeat(for each step of episode): 

With probability ɛ , select a random action a , 

otherwise a ← sign ( 
∑ N 

i =1 α
∗
i 
y i exp ( − ‖ ψ (s ) −ψ (s ) i ‖ 2 

2 σ 2 ) + b ∗) 
Execute action a , observe reward r and state ψ( s ) ′ 
Critic updates parameters according to formula (13) 

Critic obtains training data ( ψ ( s ) , y ) , y ∈ A according 

to the parameters 

Use ( ψ(s) , y ) to update the parameters of SVM 

according to formula (18) 

s ← s ′ 

until s is terminal 

Fig. 4. The accumulation of steps required for the convergence of the five algo- 

rithms. 

Fig. 5. The accumulation of the average steps of 10 episodes after the evaluated 

algorithms reaching to convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The accumulation of steps required for the convergence of the algorithm 

with various learning rates. 

Fig. 7. The accumulation of the average steps of 10 episodes after the convergence 

of the algorithm with various learning rates. 
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average steps of 10 episodes after the evaluated algorithms reach-

ing to convergence in 12 cases is shown in Fig. 5 . 

The experimental results show that in terms of the episodes re-

quired for convergence, the Sarsa( λ) algorithm can converge more

quickly than other algorithms when the number of states is small.

This is because when updating parameter, it not only takes into

account the current state, but also takes into account the ear-

lier state. Therefore, the parameters are updated more accurately.

In this paper, the SVM-A2C algorithm uses the gradient descent

method to update parameters. When the state number is rela-

tively small, the updating values of each episode are not high, so

the number of episodes required for convergence is slightly higher

than that of Sarsa( λ), but it is still better than the other algo-

rithms. When the state number increases, the performance of the

SVM-A2C is better than other algorithms. This is because with the

increase of the state number, the number of samples that agent
an use has been greatly increased, which makes parameters of

he SVM-A2C update more quickly by the gradient descent method.

herefore, the performance of SVM-A2C is superior to other algo-

ithms. 

In the case of the average steps of 10 episodes after the evalu-

ted algorithms reaching to convergence, the performance of SVM-

2C is obviously superior to other algorithms in our experiments.

his shows that SVM-A2C has a better convergence characteris-

ics and higher convergence accuracy than other algorithms based

n value function and actor-critic algorithm. Experimental results

emonstrate that the proposed SVM-A2C algorithm in the face of

he reinforcement learning problems in binary discrete space can

onverge in less episode and have more accurate results compared

ith other reinforcement learning algorithms. 

We have also done experiments with different learning rates for

VM parameters updating. The experimental results are shown in

igs. 5 and 6 . 

As we can see from Figs. 5 and 6 , the performances of the algo-

ithm are different in the case of different learning rates. The larger

earning rate can generally make the algorithm converge faster, but

he accuracy of convergence needs to be improved. When the scale

f the problem is large, the larger learning rate is likely to cause

he algorithm to be unable to converge. The smaller learning rate

akes the algorithm converge slowly, but it can significantly im-

rove the convergence accuracy. The experimental results suggest

hat in solving practical problems, we should choose the learning

ate reasonably according to the different needs. 
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. Conclusion and future work 

To solve the problem that reinforcement learning algorithms in

iscrete space are easy to fall into the local minimum and have

low convergence rates, this paper proposes a reinforcement learn-

ng algorithm based on support vector machines (SVM) classifi-

ation decision. Our algorithm adopts the actor-critic framework.

ctor selects an action according to the result of support vector

achine classification, while Critic adjusts its advantage function

ccording to the feedback of environments, utilizes the advantage

unction to optimize the parameters of SVM and finally directs Ac-

or to select an action. The experimental results demonstrate that

VM-A2C can converge in less period and have a better conver-

ence performance compared to the classical reinforcement learn-

ng algorithm and deep learning algorithm in the face of reinforce-

ent learning problems in binary discrete space. In future work,

e will further enhance the versatility of the algorithm and intro-

uce the multi-class support vector machines, support vector re-

ression machines, and non-parallel support vector machines into

he algorithm. Then, the algorithm can be applied to more environ-

ents and have better performance in solving practical problems. 
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