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Abstract—Robust few-shot learning (RFSL), which aims to address noisy labels in few-shot learning, has recently gained considerable
attention. Existing RFSL methods are based on the assumption that the noise comes from known classes (in-domain), which is
inconsistent with many real-world scenarios where the noise does not belong to any known classes (out-of-domain). We refer to
this more complex scenario as open-world few-shot learning (OFSL), where in-domain and out-of-domain noise simultaneously exists
in few-shot datasets. To address the challenging problem, we propose a unified framework to implement comprehensive calibration
from instance to metric. Specifically, we design a dual-networks structure composed of a contrastive network and a meta network to
respectively extract feature-related intra-class information and enlarged inter-class variations. For instance-wise calibration, we present
a novel prototype modification strategy to aggregate prototypes with intra-class and inter-class instance reweighting. For metric-wise
calibration, we present a novel metric to implicitly scale the per-class prediction by fusing two spatial metrics respectively constructed
by the two networks. In this way, the impact of noise in OFSL can be effectively mitigated from both feature space and label space.
Extensive experiments on various OFSL settings demonstrate the robustness and superiority of our method. Our source codes is

available at https://github.com/anyuexuan/IDEAL.

Index Terms—Few-Shot Learning, Self-Supervised Learning, Open-World, Label Noise, Metric Learning.

1 INTRODUCTION

EW-shot learning (FSL), which can mimic humans to rec-
F ognize new classes with very few examples in a task, has
drawn increasing attention due to the high cost and effort
of collecting large amounts of data [1], [2]. Most existing
FSL methods are based on the assumption that the label
information is fully clean and intact without considering
the robustness of models faced with noisy labels. In fact,
noisy labels are ubiquitous due to the existence of limited
knowledge and unintentional impairments in real-world
environments.

Take medical image analysis for example, the training
samples are tremendously difficult to acquire due to the
prohibitive cost of data collection [3], [4]. In the meantime,
the manual annotations may not be completely clean since
the training set might involve annotation bias which could
come from ambiguous medical images that confuse clinical
experts, images of unknown diseases that are beyond ex-
perts’ knowledge or unknown data corruption during trans-
mission [5], [6]. As a result, even carefully annotated and
curated datasets could contain mislabeled samples [7], [8],
[9]. Training on the biased dataset can adversely affect the
learned representation and generalization ability of models
since it is far from mirroring the ground truth distribution
[10], [11].

Recently, robust few-shot learning (RFSL) is proposed
to attempt to address the noisy label FSL problem [12],
[13]. However, these methods simply concentrate on dealing

o Yuexuan An, Hui Xue,Xingyu Zhao and Jing Wang are with the School
of Computer Science and Engineering, Southeast University, Nanjing
210096, China, and the Key Laboratory of Computer Network and
Information Integration (Southeast University), Ministry of Education,
China. (Corresponding author: Hui Xue)

E-mail: {yx_an,hxue,xyzhao,wangjing91}@seu.edu.cn

Clean Orange

O]
&

Clean Golden Retriever

&

N

>

1D Noise

0OOD Noise

Fig. 1: An example of open-world few-shot learning.

with the in-domain (ID) noise FSL problem, where noise
only comes from the known domain. The more common
out-of-domain (OOD) noise that comes from wider un-
known domains and more often exists in the real world
has not been explored in FSL. Moreover, the existing few-
shot settings with label noise are of great inconsistency and
confusion. RNNP [13] simply concentrates on the in-task ID
noise problem that samples are mislabeled by other classes
in the same task and RapNets [12] only considers out-of-
task ID noise that samples are still from the same domain
but from other classes except for classes in the current task.

In this paper, we unify the setting of noisy label FSL
problems, which is composed of ID (both in-task ID and
out-of-task ID) and OOD noise in FSL, and refer to the new
and challenging scenario as open-world few-shot learning
(OFSL). Fig. 1 provides an example of a 2-way 5-shot OFSL
task with multiple types of ID noise and OOD noise. The
known domain is from minilmageNet. In the 2-way 5-shot
task, we have an image dataset with two classes, orange
(on the top) and golden retriever (at the bottom). The in-
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Fig. 2: Overview of the proposed IDEAL (a) The generation of intra-class weight and inter-class weight. (b) A brief illustration of
the dual-networks structure for IDEAL. (c) The architecture of ProtoMod strategy.

task (type I) ID noise represents that a golden retriever in
the current task disturbs oranges and the out-of-task (type
II) ID noise represents that a lion from other classes in
minilmageNet corrupts golden retriever. OOD noise rep-
resents that samples e.g., the cartoon character and the
landscape from any unknown domains disturb the current
distribution. Compared with RFSL, the OFSL problem con-
tains more general FSL tasks in the real world, which is more
challenging and meaningful.

The key challenges of open-world few-shot learning
come from two aspects: 1) complexity: due to unknown
sources of noise, distinctive characteristics are inherent in
each kind of noise. Therefore, the model requires to adopt
appropriate strategies to respond to each noisy situation. 2)
uncertainty: due to the rarity of samples, each sample might
contain important category information and potential noise
is hard to detect. Therefore, the model should eliminate the
uncertainty and disturbance from noisy samples.

To handle the above challenges, we propose a unified

dual-networks framework for calibration from instance to
metric perspectives. For the challenge of complexity, the
instance-wise calibration with dual-networks distinctively
tackles these different types of noise by leveraging intra-
class information to discard dissimilar noise in each class,
and mining inter-class information to assign in-task ID
noise to its potential correct class and filter out the out-of-
task ID and OOD noise. For the challenge of uncertainty,
the instance-wise calibration leverages intra-class and inter-
class information to respectively generate class centroids in
two embedding spaces constructed by dual networks, and
the metric-wise calibration fuses the two semantic spatial
metrics to adaptively calibrates the metric scores. Specifi-
cally, as shown in Figure 2, our Instance-wise anD mEtric-
wise cALibration (IDEAL) framework is composed of a
contrastive network and a meta network. The contrastive
network leverages the correlation of support samples from
the same class (i.e., intra-class information) to set intra-class
weights for support samples. The meta network leverages



the correlation between support samples and all classes (i.e.,
inter-class information) by dividing all support samples into
different clusters and evaluating their contributions to each
cluster to set inter-class weights of support samples. Then,
each network respectively constructs modified prototypes
with intra-class and inter-class weighted samples in their
corresponding embedding spaces. After that, for a query
sample, each network measures the similarity between the
query sample and each prototype in corresponding em-
bedding spaces. Moreover, IDEAL constructs a novel uni-
fied metric, i.e., Ensemble with Consistency (EC) similarity,
by fusing multiple semantic spatial metrics to adaptively
calibrate the label confidences of the query samples. EC
similarity can implicitly scale the similarity score of each
class with the consistency of similarity scores measured by
both networks, so as to further mitigate the impact of noise.
Our main contributions can be summarized as follows:

o We identify open-world few-shot learning (OFSL) as
anew challenging topic and unify the setting of noisy
label FSL problems.

e We propose a unified framework with a dual-
networks structure to tackle the OFSL problem,
which collaboratively performs instance-wise and
metric-wise calibration.

o For instance-wise calibration, we propose a proto-
type modification strategy by aggregating prototypes
with intra-class and inter-class information extracted
by the dual networks to calibrate feature space.

e For metric-wise calibration, we propose a novel sim-
ilarity metric by fusing multiple semantic spatial
metrics to calibrate label space. The generalization
and superiority of the proposed metric are verified
by detailed theoretical analyses.

The rest of the paper is organized as follows. We review re-
lated work in Section 2. The problem definition and related
notation are presented in Section 3. The proposed IDEAL is
detailed in Section 4. The experimental results are reported
in Section 5 and the conclusion is given in Section 6.

2 RELATED WORK

Few-shot Learning. As a challenging machine learning
problem, FSL has been explored with different ideas to alle-
viate the overfitting problems [1], [14]. In general, the preva-
lent methods can be divided into four types: data augmen-
tation method, model-based method, optimization-based
method, and metric-based method. Data-augmentation
methods aim to compensate for the insufficient number of
available samples by generating some samples. Specifically,
MetaGAN [15] synthesizes data by introducing generative
adversarial networks (GANs) and distribution calibration
[11] synthesizes data by estimating the distribution of novel
classes with the statistics information from base classes. The
optimization-based method is to find a set of model parame-
ters that can be adapted with a few steps of gradient descent
to individual tasks [16], [17], [18]. MAML [17] is a represen-
tative of the gradient-based model, which advocates learn-
ing a suitable initialization of model parameters from base
classes, and transfers these parameters to novel classes in a
few gradient steps. The idea of the metric-based method is
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to leverage similarity information between samples to clas-
sify query samples to corresponding classes [19], [20], [21],
[22]. Prototypical networks [20] aim to learn the prototypes
as class centroids and classify samples by comparing the
distance to each prototype. Since the prototypical networks
were proposed, many methods [23], [24] have been devoted
to modifying the prototype to maintain the robustness of
FSL. Recently, ReProto [24] attempts to restore prototypes in
one-shot problems by learning a variance of the prototype of
one example and the prototype of all examples of the class.
ProtoComNet [23] extracts features from WordNet to com-
plement the semantic information of prototypes. However,
due to the existence of unknown label noise, these methods
might easily learn a biased distribution, which inevitably
causes severe degradation of performances.
Self-Supervised Learning. Self-supervised learning learns
a feature representation by constructing pseudo-labels for
annotation-free pretext tasks and learning to predict them
[25], [26]. One of the most general pretext tasks is designed
by contrastive loss, which aims to learn a feature represen-
tation by bringing the positive pairs closer, and spreading
negative pairs apart. Many studies dedicate to contrastive
learning and achieve promising performances [27], [28],
[29]. MoCo [27] trains a representation encoder by matching
an encoded query sample to an encoded key in a memory
bank. SImCLR [28] uses the normalized temperature-scaled
cross-entropy loss as contrast loss. SWAV [30] introduces a
scalable online clustering loss without computing pairwise
comparisons. BYOL [31] abandons the negative pairs and
only relies on positive pairs to learn a feature representation.
SimSiam [29] removes the momentum encoder and designs
a simpler one based on BYOL.

However, most existing contrastive learning methods are

dependent on the availability of large training samples and
unsuitable for few-shot scenarios. Therefore, some papers
leverage auxiliary information to improve the performance
of self-supervised learning [32], [33], [34]. In this paper,
inspired by our preliminary work CSS [32], we leverage
prior knowledge learned by the supervised network with-
out auxiliary data to reduce the representation bias of the
contrastive model for few-shot settings.
Label Noise. Label noise is ubiquitous and can not be
ignored in the real world [35]. To address this problem,
different approaches have been proposed [36], [37]. One line
of these approaches is instance reweighting, which usually
selects a certain number of small-loss training samples as
true-labeled samples [38], [39], [40]. MentorNet [38] pre-
trains a sample selecting network, and uses the network to
select clean samples for model training. Co-teaching trains
two networks and each network selects clean samples for
the other [39]. Meta-Weight-Net adaptively learns an explicit
weighting function from data [40]. The other line of ap-
proaches is label refurbishing, which obtains a refurbished
label to reduce the adverse effect of false labels [10], [41],
[42]. [43] fits a two-component beta mixture model to model
clean and noisy samples. [10] and [42] update the target
model with soft labels provided by a meta model with
bilevel learning optimization. However, in FSL scenarios,
the above methods are difficult to train with limited exam-
ples. Therefore, it is urgent to study a new method to deal
with label noise in FSL.



Compared to FSL and label noise, FSL with label noise
has been hardly explored. [13] generates a new feature of
samples with features of other samples in the same class to
eliminate the effect of In-task (type I) noise. [12] considers
the attention module to reweight each sample from one
class according to its contribution to its corresponding class
for out-of-task (type II) noise. However, their settings for
noisy label few-shot problems are inconsistent and less com-
prehensive. Moreover, their methods only consider intra-
class information while ignoring the inter-class information
which is more valuable for classifying the in-task ID noise to
its potential correct class and filtering out the isolated noise
from unknown classes in both the known domain (out-of-
task ID) or unknown domains (OOD).

In contrast to the aforementioned literature, we propose
a more general topic, that is, open-world few-shot learning.
To the best of our knowledge, it is the first work to consider
both ID noise and OOD noise in few-shot learning. To ad-
dress the problem, we propose a unified IDEAL framework
by combining the advantages of the above two lines to clean
the open-world noise, i.e., instance-wise and metric-wise
calibration.

3 PROBLEM SETTING
3.1 Few-Shot Learning

For N-way K-shot problems, we are given two datasets:
a training set with a few labeled samples which can be
called support set S = {(x;,y;)} ;" and a test set con-
sisting of unlabeled samples which can be called query set
Q = {(x, ) filfv}]\f_l x; denotes sample, y; € Choper is its
corresponding label, N is the number of classes in S, K is
the number of samples extracted for each class, and M is the
number of samples in (). Each FSL problem that estimates
the class of samples in the query set with the support set can
be regarded as a task. Meanwhile, an auxiliary dataset with
abundant labeled samples D, = {(x;,y;)}._, which is also
divided into support sets S, and query sets @) is used for
meta-training, where y; € Chyse and Chase [ Crover=0. This
strategy can be regarded as a rehearsal to train a model on
the data from the base classes Cp,s. s0 that the model can

generalize well to the novel classes Cyopel-

3.2 Open-World Few-Shot Learning

In this paper, we consider an open-world few-shot learning
(OFSL) setting where labels of support sets are unreliable
and some samples are randomly polluted by noisy samples
of other classes especially the classes that are unseen during
the whole learning process. The existing noise conditions
can be divided into three types: type I ID noise, type II ID
noise and OOD noise. Type I ID noise is from other classes in
the current task [36], which is an extreme situation. Due to
sparse data and simultaneous confusion of two classes, type
I ID noise severely disturbs both distributions of the two
classes and inevitably degrades the performance of learned
models. Type II ID noise is from other classes in the known
domain except for classes in the current task, which disturbs
the distribution of the current corrupted class and causes
semantic shift [44]. OOD noise is from wilder external
domains, which is more common in real world. Due to
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the introduction of unknown domains, semantic shift and
covariate shift [45] might both exist in OOD noise, which
leads to unforeseen shift of feature and label distribution.
Formally, we define the OFSL problem as follows.

Problem 1 (OFSL). Consider a known domain Z = X x ),
where X is a d-dimensional feature space while Y is a label set.
For an OFSL problem with N-way K-shot tasks, given a dataset
which contains a support set (training set) S = {(x;,v:)|y; €

VINXE and a query set (test set) Q = {(x;,vi)lyi €

y’}l N}A_{l, where V' is a subset sampled from ) and contains
N classes. For the OFSL dataset, S might not be from a clean
distribution and there might be different rates of label noise in
support samples. The undesirable label noise could be from ID
noise and OOD noise. Each OFSL task estimates labels of query

samples with the support set.
In OFSL, we consider three types of label noise:

Definition 1 (Type I ID Noise). Given an OFSL task, for the
specific class j, the type I ID noise is defined to be the noise
generated from the label subset V' — {j}, i.e., the label set that
contains other N — 1 classes sampled in the current task.

Definition 2 (Type II ID Noise). Given an OFSL task, the type
111D noise is defined to be the noise generated from the label subset
Y — ), ie., the label set that contains other classes in the known
domain except for the N classes sampled in the current task.

Definition 3 (OOD Noise). Given an OFSL task, the OOD
noise is defined to be the noise generated from the label set V*
which is from other domain Z* = X* x Y* and Z* Z=().

In order to mimic the training process with noisy labeled
datasets, we also take the rehearsal strategy and deliberately
add label noise to the support set of D, to boost the
robustness of our model.

3.3 Compared with Traditional Open World Recogni-
tion

Contrary to the closed world, the open world is posted to
port the learning system from controlled lab environments
to the real world. Therefore, the learning system should
face unknown, uncontrolled environments, where unknown
classes or even unknown domains might exist in the training
set (support set) or test set (query set). The settings proposed
in [46], [47] and [48] emphasize the discrimination ability
of the model for query samples (test samples) of unknown
classes, while our paper mainly focuses on the scenario
that there are open-world samples, i.e. noisy samples from
known classes, unknown classes in the known domain or
unknown domains in the support set which could severely
damage the robustness of models in the open world.

The detailed differences between the settings of open-
world few-shot learning and traditional open-world recog-
nition are as follows: 1) open-world few-shot learning tries
to handle unknown classes in support samples, while tradi-
tional open-world recognition focuses on unknown classes
in query samples; 2) open-world few-shot learning con-
siders noise from not only the known domain but also
unknown domains, while traditional open-world recogni-
tion only considers query samples from unknown classes
regardless of domain variances; 3) open-world few-shot



learning aims to maintain the robustness of models in the
open world while traditional open-world recognition tries
to enhance the identification ability of models for unknown
classes.

4 METHOD
4.1 An Overview of the Proposed Framework

To address the OFSL problem, we propose a dual-networks
framework for instance-wise calibration and metric-wise
calibration. Fig. 2(b) shows a brief illustration of the dual-
networks framework which is composed of the contrastive
network g¢ and the meta network h,,. First, the contrastive
network extracts intra-class weights of support samples and
the meta network extracts inter-class weights of support
samples in Fig. 2(a). Then, each network respectively adopts
a novel prototype modification (ProtoMod) strategy with
intra-class and inter-class weighted samples to construct
prototypes in Fig. 2(c). Finally, IDEAL uses the proposed
EC similarity to adaptively calibrate the similarity score
between a query and each prototype in the two semantic
spaces for better prediction.

4.2 Pre-Training

In FSL, the samples used for training are limited and thus it
is necessary to find information irrelevant to the class from
limited samples to overcome the impact of noise. Therefore,
we first pre-train the contrastive network by contrastive
self-supervised learning and then train the meta network
and finetune the contrastive network. In our paper, inspired
by our preliminary work CSS [32], we leverage supervised
information as prior knowledge to condition the feature
manifold of the contrastive network so as to be resilient to
few-shot settings and reduce representation bias. Therefore,
the pre-training of the contrastive network uses the condi-
tional loss in CSS [32] and contrastive loss in SimSiam [29]
as the final pre-training loss (more detail can be found in
Appendix A). The training of meta network is described in
detail in section 4.5.

4.3

Inspired by [23] and [49], the feature extractor trained by
a self-supervised method forms loose but feature-related
clusters and that trained by a supervised method can form
sharp but isolated clusters. Therefore, we adopt two kinds
of network, contrastive network and meta network, to re-
spectively extract information for prototype modification.
The contrastive network extracts the feature-related intra-
class information to discard dissimilar noise in each class.
Meanwhile, the meta network extracts sharp and isolated
inter-class information to assign type I ID noise to its po-
tential correct class and filter out type II ID and OOD noise.
Therefore, the combination of the disentangled information
might collaboratively benefit each other.

Instance-Wise Calibration

4.3.1

We use the degree of correlation between samples and their
class extracted by the contrastive network to determine the
intra-class confidence weight for each sample, so as to better

Intra-Class Calibration
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distinguish true-labeled samples from noise. For every two
same labeled support samples x, and x;, we calculate their
pairwise correlation score to compare their similarity

cor(za, xp) = cos (ge (®a) , ge (T1)) - 1

For a N-way K-shot task, for each sample, we construct
an intra-class correlation vector composed of all correlation
scores between the sample and the K same labeled samples,
which represents the feature correlation between the sample
and its corresponding class. Then, for each class, the corre-
lation matrix Z,, € RE*X of class n can be obtained, which
reveals the whole correlation between samples labeled with
class n and the class n. Our goal is to model the interconnec-
tion between congener correlation features and the potential
correlations between samples. Each correlation feature Z,,
contains the relevant information between Z §f> and other
K —1 congener support data, which simultaneously scatters
across other K —1 correlation features. The properties of the
interconnection make it more reasonable to take into consid-
eration the full context of the congener correlation features
to generate the intra-class weight. To model the relationship
between samples, we adopt two types of encoders:

1) BiLSTM. Inspired by [19] and [12], we use BiLSTM
to encode the relationship between samples. The key com-
ponent which allowed for more expressive models is the
introduction of content-based attention in BiLSTM. Similar
to [19], we leverage the content-based attention capability
of BILSTM to encode support samples in the same class.
Specifically, we regard each correlation matrix as a sequence
and use the BiLSTM parameterized by ¢ to encode the
correlation sequence. The forward pass can be given by

WD, eD = BiLSTM (20,000, el VL), @

where h and e denote the hidden and cell state vectors inside
BiLSTM respectively and Z Sf) is the i-th feature vector in
Z,,. Similarly, we can attain the backward pass ZSZ ), 053 ).
We use a multi-layer neural network followed by a K-way
softmax layer p to achieve the intra-class weight vector V,

for samples labeled with class n:

Va=p(c(c(rDaD), e (rf 1)), @

where C denotes the concatenation operation,n = 1,--- , N.
We denote that v,(mk) is the k-elementinV,,, k=1,--- | K.

It is worth noting that BiLSTM is used to extract the
sequence information, which is not ordered agnostic. How-
ever, the key module in BiILSTM which mainly affects the fi-
nal performance is the content-based attention. The content-
based attention encodes the correlations of paired samples
in the same class to extract the importance information of
each sample to its category. Besides, we propose an order-
agnostic encoder for intra-class calibration, the transformer
layer to extract the similarity information of support sam-
ples in the same class.

2) Transformer. The self-attention mechanism of trans-
former is an effective way to leverage the similarities be-
tween support samples and naturally weigh them when
aggregating them into prototypes. Specifically, we use the
transformer layer proposed in [50]. Since shot and class
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Fig. 3: Ideal illustration of Ensemble with Consistency principle.

order are both typically arbitrary in FSL, we direct input the
correlation matrix Z,, € RX*X into the transformer layer
without positional encoding:

lo7) - 4)

where ¢ is the parameters of the transformer layer. Then
a multi-layer neural network followed by a K-way softmax
layer is used to achieve the intra-class weight vector V', for
samples labeled with class n:

where p is the combination of the multi-layer neural net-
works and the softmax layer.

on = Transformer (Z,

4.3.2

The feature extractor trained by a meta network can form
compact clusters that can attain enlarged inter-class variance
to identify type I ID noise to their potential correct class and
filter out noise from unknown classes (type II ID noise or
OOD noise). Therefore, we use meta network as a feature
extractor in the inter-class calibration.

We infer that samples may be mislabeled by other classes
in a task. Intuitively, a sample with low similarity to a class
centroid should be given with a small weight for each class
and a sample with low similarity to all class centroids might
be noise. Therefore, the generation of reasonable prototypes
should consider both the congeneric support samples and
latent congeneric samples while mislabeled by other classes.
In the inter-class calibration, we adopt k-Means clustering
and perform clustering on all support samples. For a N-
way K-shot problem, we set the number of clusters to N
and use the class prototypes of support samples as initial
cluster centers. Then, k-Means clustering is used to update
cluster centers until they are converged. We calculate the
similarity matrix S € RV*NX between final cluster centers
and all support samples with cosine similarity. After that,
a softmax operation with temperature scaling is applied to
obtain the inter-class weight w!, of a support sample x; for

Inter-Class Calibration

the class n. For a support sample x;(t = 1,--- , NK), its
inter-class weight for class n is:
S(t) /T
t) _
w,(l) o ZNXK s9 /7’ ©®)
7j=1

where S isa similarity score representing the contribution
of sample x; to class n, and 7 is a temperature parameter.

4.3.3 Prototype Modification

In IDEAL, the contrastive network and the meta network
respectively learn modified prototypes with intra-class and
inter-class weighted support samples in their corresponding
embedding spaces. The modified prototype of the class n in
the space constructed by the contrastive network is given

by:

N><K
_O‘Zk 1 v ge (@) +5Zt 1 wge (@), (7)
wherea+ 3 =1, o' is intra-class weight and wis inter-

class weight for class n. Note that m( ) i

the class n in a support set (k = 1,--- , K) while «; is the t-
th sample in the support set (t = 1,--- , NK). Similarly, the
modified prototype of the class n formed by meta network
is given by:

, K
— E: k) p,
P, = k:1U”

is the k-th sample of

N><K

LR

4.4 Metric-Wise Calibration

Inspired by the communication theory that robustness is
gained by adding variety in different levels of the trans-
mission encoding [51], [52], dual networks jointly predict
the similarity score between a query sample and each mod-
ified prototype. Moreover, to mitigate the impact of wrong
predictions of two networks, we introduce a metric-wise
calibration on top of the two networks and propose an
Ensemble with Consistency (EC) principle to adaptively cal-
ibrate the prediction score. The basic idea is that, if similarity
scores predicted by two networks are more consistent, the
confidence of corresponding label prediction in the latent
ensemble space should be magnified.

4.4.1 Motivation of Ensemble with Consistency Principle

To visualize this idea, one sample and two class centroids
are mapped to two latent 2-dimensional embedding spaces
(spaces A and B) as illustrated in Fig. 3. In this paper, a
prototype is noted as a representative of a class centroid in
an embedding space. For a given sample x and prototype p,,
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of class n, ' and p}, are their corresponding representations
in space i, In the top line, df* and d? are distances between
the sample = and the prototype p; in two spaces. Similarly,
d5 and d5 are distances between x and p,. From the third
column pictures, the average distances in two representation
spaces are the same dy = ds. However, from the fourth
column pictures, the variance (negative consistency) of dis-
tances between x and p, in two spaces is smaller than p,,
dy > d, indicating that its prediction of average distances
might be more consistent and convincing. Therefore, the
consistency of distances in two spaces can be regarded as
confidence for the average ensemble distance to calibrate
the label confidence prediction of two spaces.

4.4.2 Ensemble with Consistency Simiarity

The similarity score between a pair of instances can be set as
the negative distance. We use the consistency of similarity
scores in two spaces as a class scaling factor for the ensemble
similarity results to achieve a more unbias metric as shown
in Fig. 4. Our Ensemble with Consistency (EC) similarity
score can be used to learn a joint similarity score from
multiple metrics in different spaces considering both the
diversity and consistency of different metrics. The definition
of EC similarity score is given as follows:

Definition 4 (EC Similarity Score). Given a dataset containing
N instances D = {z; = (x;, yi)}fi\;l' where instance is sampled
from a d-dimensional feature space X while label value y; is
generated from a scalar label space Y, and Z = X x Y. ¢1(+)
and ¢o(+) are two different functions mapping from X to a high-
dimensional space. For two instances x; and x;, ¢1(x;) and
¢a2(x;) are feature representations of x; in two spaces, $1(x;)
and ¢o(x;) are representations of x; in two different spaces,
the EC similarity can be defined according to Ensemble with
Consistency of similarities in two spaces

SEC (5131‘,.’13j) :CA($1',:BJ') xé(wi,mj). (9)

Here,
C (zi,25) = C (d(d1(2:), $1(;)), d(do (i), ba () (10)

is used to evaluate the confidence of similarity predictions for
two instances and scale the similarity prediction score, d(-,-)

is a similarity metric in the same space, C(-,-) indicates the
consistency of similarities measured in two spaces.

E(wiyxy) = B (d(¢1(i), d1())), d(d2(i), d2(;))) (1)
is used to totally evaluate the similarity prediction for two in-
stances, E(-,-) indicates a unified ensemble evaluation between
two representations in two spaces.

Theorem 1. The average cosine similarity can be induced as the

EC similarity if existing two spaces.

Proof. For a paired sample (x;,«;), the cosine similarity
scores between the pair in two spaces are

cosar=ens (61 20) 1 () = LS 02
i 2

COS (xo=COS ((b? (xl) ) ¢2 (wj)) = ||¢f}m(x;”) H¢2 ((ZJJ)) || . (13)
i 2

We define the similarity score d(,-) recos(-, ).

= a
Then, d (¢1 (), ¢1 (x;)) = arccos (¢1 (i), ¢1 (xi)) = aa
d(¢2 (x;), d2 (x;)) = arccos(dz (x;), d2 (x;)) = a2 and
a1, az € (0,m). According to the definition of EC similarity
score, C' : RxR%RandE tRXR — R.C(dy,ds) is de-
ds)), E(dy,ds) is set as cos( (dv +da))
where d; and d> are distances between two 1nstances

noted as cos( (d1—

COS Q1+ COS (g
2 cos (% (g — ag)) X cOS (% (a1 + az))
= 2008 (5 (0(0n (@) 01 (@) ~ d (62 (@) .62 (2))

( (d (61 (@) 61 (wj>>+d<¢>2<wi>,¢2<wj>>>)

o< C(d(d1(xi), 1 (z;)),d (2 (i), P2 (x5)))
f<E(d(¢1 (ffi) 91 (x5))  d (92 (i), P2 (5)))
= C(CL'Z‘,SEJ') X S(CL‘Z‘,CBJ‘>

SE‘C(:E'L" :cj).

(14)



where the first equation can be proved according to Sum-to-
product Identities [53]. O

In our paper, by defining the instance x, we attain the
corresponding representations ge(x) and hy(x) of = in
embedding spaces constructed by contrastive network and
meta network respectively. Assume existing prototypes p,,,
p,, are corresponding class centriod ¢,, of class n in spaces
A and B. Then, according to Theorem 1, the average cosine
similarity can be induced as the EC similarity

Sec(x, en) = cos (g¢ (x),p,) + cos(hy, (), p,).  (15)

4.4.3 Analyses of EC Similarity

EC Similarity for IDEAL. Based on the EC Similarity,
IDEAL fuses multiple semantic spatial metrics to adaptively
calibrate the label confidences of the query samples. EC
similarity can implicitly scale the similarity score of each
class with the consistency of similarity scores measured
by both networks, so as to further mitigate the impact of
noise. Specifically, in IDEAL, EC similarity integrates the
consistency of the latent sample information in different
decision to enhance the robustness of the model. For the
type IID noise, EC similarity leverages the decision informa-
tion of different spaces to further confirm the corresponding
relationship between the samples that may be mislabeled
and the potential correct classes. For the type I ID noise and
OOD noise, EC similarity can leverage the consistency of
different spaces to relieve the influence brought by possible
semantic shift and covariate shift. The experimental validity
of metric-wise calibration is illustrated in Section Table 5.
Theoretical Analysis. We also give a theoretical analysis of
the EC similarity under the metric learning framework [54]
below.

Given a dataset containing N instances D
{z; = (wi,yi)}ﬁv:l, where instance is sampled from a d-
dimensional feature space X while label value y; is gener-
ated from a scalar label space ), and Z = X x ). Denote M;
and M as the similarity score matrices in different spaces
according to the mapping functions ¢¢ and ¢,. Then the
empirical objective of the multiple metrics is

N
SN i (S (i, ;)

i=1 j#i
2 2
+ A (M + 1M1
=min Ry (D) + A (||M1||2F + ||M2||2F) )
&

. 1
min ———
&, N(N — 1)

(16)

where / (-) is a non-increasing continuous convex loss func-
tion, ¢;; = II[y; =y;] € {—1,1} denotes whether two
instances are similar or not and

Sep (@i, @) = cos (¢ (xi) , Pe () +c0s (¢ () , Dy (C(Bj)))

17
where S¢ , are EC similarity score parametered by ¢ and
¢ and S¢ , (@i, ;) > 0 when two instances are similar,
otherwise not.

8

The empirical objective function above constructs an
unbiased estimation of the following expected risk

win B, o, [0 (@2 (Se.p (i, 2)] + A (1005 + |21 )

—minR (2) + A (M]3 + M)
&p
. (18)

The empirical and expected risk Ry (D) and R (2)
are based on empirical dataset D and true distribution
Z, respectively. Denote || A4;;|| = (z; —x;) (x; — mj)T as
the outer product of the difference between instances x;
and ;. Assume /¢ is bounded by ¢,, we have Ry (D) +
MM+ 1Ma]3) < R (0) < £ Thus, M7 +

1M < &
Then we have the following theorem.

Theorem 2. Given ||A;j|| . < o for all possible i and j, and loss
¢ (+) is L-Lipschitz, then with probability at least 1 — 6, we have

I
<1+ 1O§5>. (19)

Proof. define the supreme of excess loss function U (D)
supg ,R (Z) — Ry (D). Replacing one example z, in D =
{z1,"--,zn} with z;, then the upper bound of the differ-
ence supp, v [U(D) — U (D')] is

sup [1U(D) — U (D)

410, «

R(2) <R (D) + T8

D,z,
< sup |Ry(D)— Ry (D)
D,z;,&,c,o
9 N
=Sup | ——— 2 (qoi (Se,p (x4,25)))
'D,z; N(N - 1) i:;#o i
— €(qoi (Se,p (Ti,20))) |
4L N (20)
<SUp |qoi (Se,p (i 20))]
p N(N-1) ile;g &
4L N
< P Ay, M Ay, M-
_S%p N(Nf 1) i:;#OK 015 1> +< 015 2>|
8L (N —1)
<—— 7 M M-
SN(NZ1) (a([[Mi]|p + (| M2] )
410, «
< .
~— AN

The first inequality comes from the basic property of
sup(-) operator. The second inequality comes from the Lip-
schitz property of the loss function. The third inequality
comes from [54]. Since « give upper bound for ||Al| 5, we
have the forth inequality. The fifth inequality comes from
1M + Ml < 345 + M) < % Given the
bounded difference condition, together with McDiarmid
Inequality [55], then with probability 1 — &

4L0,a [log %
< .
U(D) <Ep[UMD)]+ ——\ 5y (21)
According to [54], Ep [U (D)] is bounded by:
4L
Bo [U(D)] < “ 2 @)

MWN



Algorithm 1 Meta training of IDEAL

Require: The series of support sets S, and query sets Qp
from base classes.
Require: The pre-trained contrastive network ge.

1: Initialize the meta network h, and BiLSTM ¢;..

2: while not done do

3:  Sample a support set S = {(z;,y;) } 5K
set Q = {(Z;,7;)} M, from S}, and Q.

4:  Compute the modified prototypes according to Eq.(7)
and Eq.(8).

5:  Compute the EC similarity scores between different
query samples and the modified prototypes according
to Eq.(15).

6:  Update h, and ¢, by forward computation and back-
propagation according to Eq.(29).

7: end while

Output: The meta network h, and BiLSTM ¢y

and a query

Plug (22) into (21), then Theorem 2 can be obtained
immediately. O

Theorem 2 illustrates that the generalization error bound
of the EC similarity has a convergence rate of (’)(LN), which
is the same order as other metrics [54], [56], [57]. Although
the proposed method is learning in different spaces, the
generalization error bound can be bound uniformly. It is also
noteworthy that our method can promote the representation
ability of the model by learning in different spaces without
the raise of the generalization error.

4.5 Model Training and Inference

In this section, we detail the meta-training and inference.
In the meta-training stage, we train the h,(-) in meta net-
work and finetune the feature extractor g¢(-) in contrastive
network. According to section 4.1, disentangled informa-
tion learned by the two networks can remedy each other.
Therefore, contrastive network and meta network respec-
tively learns modified prototypes according to intra-class
and intra-class weights of support samples in their corre-
sponding embedding spaces. Finally, the EC similarity score
is used to measure the similarity to each class according to
prototypes information from different networks.

4.5.1 Meta-Training

In the meta-training, we train meta network h(-) and fine-
tune the contrastive network g¢(-) with three loss functions.
Meta Loss. Given a query sample , € @ in a task,
the classifier outputs the normalized EC similarity score
between the query sample &, and class centroid ¢,, of class
n

exp (simpc (Zq,¢n) /T)
> exp (simpc (&q,¢n) /T)’

Py =nlEy) = (23)

where

simpc (&g, €n) = cos (ge (&) ,Py,) + cos(hy, (Z4) , Py,
(24)
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according to the theory analysis in section 4.4 and 7' is a
temperature scaling parameter. Then, the meta loss is given

by

1 M

Lpe = M Zq:l [_ log Psa (y = Yq ‘jq )] ) (25)
where M = |Q] is the number of query samples in a task.
Intra-Class Noise Loss. Similiar to [12], we consider the
auxiliary set Dy = {(x;,v:;)}X; for meta-training to be an
offline data set containing sufficient clean supervised data.
Even if D;, might contain noise-polluted instances, we have
enough time to sift the data in Dy, or utilize the suitable data
cleansing methods [35], [58] to filter D;, [12]. Therefore, D,
is regarded as a clean dataset. Since the mislabeled data in is
artificially introduced, we know which one is noise during
the training process. The intra-class noise loss is acted upon
the intra-class weight of support samples in a task:

f= LS (1 (@) g (1 - 0)), @)
/ N n=1k=1 ! !

(k)

where the indicator function IT (azn (k)

) is 1 when x5’ is an
artificially introduced mislabeled sample and 0 otherwise.
Inter-Class Noise Loss. As we all know, a good feature
extractor can benefit clustering and evaluation of the class.
We introduce inter-class noise loss to measure the inter-class
noise information. For all support samples in each task, we
construct similarity matrix M € RVEXNK to measure the
similarity of each pair of samples. Then the loss of inter-class
noise is given by

N

1 NK K
Lo =~ (N Loim 2gm Mo is @7
where
1,  i#jandl(z®)=(xV)
Aig=§ -1 i#jandi@?)£i) @)

0, 1=7

and [ :c(i)) denotes the groud-truth label of =(*).
Final Loss. Finally, the following objective function is used
to optimize the meta network

Liotal = Lme + nLTa + ’Y‘cem (29)
where 7 and v are positive constants trading off the im-
portances of different losses. Algorithm 1 summarizes the

algorithmic description of the training process the proposed
IDEAL.

4.5.2 Inference

In the inference stage, we use the EC similarity to measure
the score for each class. For a query sample &, the class with
the highest score is obtained as the final label prediction:

§q = argmax simgc (&4, Cp)
n=1,...,.N
' B N / (30)
= argmax (cos (g¢ (Zq) ,Py,) + cos(hy (Z4) , Py,)-

n=1,...,
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TABLE 1: Comparisons on FSL tasks (5-way 5-shot, Acc.%).

Methods Backbone CIFAR-FS FC100 minilmagenet tieredlmagenet
Proto Nets [20] C64E 68.78+0.77 48.30+0.76 64.6910.69 61.5010.74
Matching Nets [19] C64E 68.9310.74 48.284+0.73 62.75%0.75 60.741-0.81
Relation Nets [21] C64E 65.0140.79 48.02+0.72 63.9610.69 60.3510.75
MAML [17] C64E 70.30%0.77 46.751+0.72 63.37£0.70 62.3140.78
DKT [59] C64E 67.8110.73 47.70+0.74 62.4310.72 59.5840.80
FEAT [60] C64E 72.43%0.77 47.61+0.69 63.18+0.69 65.4210.79
S2M2 [61] C64E 71.0140.74 47.90+0.72 64.70%0.66 63.5310.76
CSS [32] C64E 74.5940.72 49.7240.69 68.08+0.73 67.8010.77
Masked Soft k-Means [62] C64E 67.46+0.78 49.06+0.75 62.68+0.72 60.77+£0.79
PRWN [63] C64E 70.16+0.75 49.50+0.73 64.831+0.71 63.58+0.75
RNNP [13] C64E 68.69+0.74 45.91+0.74 63.88+0.79 63.73+0.87
RapNet [12] C64E 67.84+0.76 47.86+0.75 63.5310.68 61.56+0.79
IDEAL-B (Ours) C64E 74.63+0.70 51.95+0.72 67.821+0.67 67.30£0.76
IDEAL-T (Ours) C64E 74.64+0.71 51.76+0.69 68.104-0.62 67.934-0.72
Masked Soft k-Means [62] ResNet-12 75.33£0.71 50.53£0.71 69.50+0.73 66.12+0.78
PRWN [63] ResNet-12 81.43+0.67 54.15+0.74 73.8310.69 69.57+0.75
RNNP [13] ResNet-12 75.5610.77 49.12+£0.77 65.88+0.78 69.10£0.86
RapNet [12] ResNet-12 80.06+0.68 54.6740.74 72.8610.64 69.44+0.75
IDEAL-B (Ours) ResNet-12 83.06+0.68 57.33£0.74 75.9040.62 77.0240.75
IDEAL-T (Ours) ResNet-12 83.8610.61 57.8740.73 75.2610.66 76.25+0.77

TABLE 2: Comparisons on OFSL tasks with varying noise rates of type I ID noise (5-way 5-shot, Acc.%).

Methods Backbone CIFAR-FS FC100 minilmagenet tieredImagenet
20% 40% 20% 40% 20% 40% 20% 40%
Proto Nets [20] C64E 63.611+0.82 | 49.6640.84 | 43.79+0.72 | 36.8310.69 | 58.4040.76 | 47.07+0.75 | 55.801-0.84 | 44.57+0.84
Matching Nets [19] C64E 59.75+0.78 | 48.7740.77 | 43.1540.70 | 36.32+0.61 | 56.554-0.71 | 44.7840.72 | 54.48+0.74 | 45.194-0.75
Relation Nets [21] C64E 63.9840.80 | 51.3040.85 | 41.54+0.74 | 34.544-0.67 | 57.0640.70 | 45.87+0.77 | 56.194-0.81 | 45.0140.82
MAML [17] C64E 61.9610.84 | 48.5840.80 | 40.50+0.69 | 33.754-0.63 | 55.7740.70 | 45.00+0.71 | 54.194-0.79 | 41.90+0.77
DKT [59] C64E 61.1310.81 | 49.6440.80 | 44.38+0.73 | 36.954-0.68 | 56.68+0.72 | 46.13+0.73 | 56.631-0.77 | 46.14+0.75
FEAT [60] C64E 66.8810.78 | 52.644-0.90 | 43.29+0.68 | 35.6610.64 | 59.1640.75 | 46.82+0.81 | 60.984-0.81 | 47.2440.80
S2M2 [61] C64E 66.4510.80 | 52.9540.87 | 43.76+0.71 | 36.4940.70 | 60.3840.74 | 47.41+0.84 | 58.861-0.81 | 46.89+0.87
CSS [32] C64E 65.3910.82 | 52.444-0.91 | 43.86+0.73 | 36.5940.71 | 59.8240.75 | 47.78+0.78 | 59.451-0.83 | 47.18+0.82
Masked Soft k-Means [62] | C64E 59.18+0.85 | 41.7740.84 | 43.9540.75 | 36.08+0.78 | 56.9740.74 | 43.3040.80 | 54.66+0.85 | 35.424-0.81
PRWN [63] C64E 62.3610.83 | 45.8840.83 | 45.39+0.73 | 36.6740.72 | 57.9740.72 | 44.09+£0.77 | 56.1010.76 | 42.3240.83
RNNP [13] C64E 65.5910.85 | 52.5941.17 | 42.24+0.75 | 35.5740.77 | 59.9740.86 | 47.74+1.05 | 60.0740.93 | 47.44+1.13
RapNet [12] C64E 64.4010.83 | 45.6240.89 | 45.71£0.74 | 35.9240.75 | 59.0140.75 | 43.98+0.79 | 56.284-0.80 | 42.46+0.85
IDEAL-B (Ours) C64E 69.0310.77 | 55.1740.95 | 47.10+£0.76 | 37.6040.77 | 61.5440.79 | 49.87+0.83 | 61.101-0.81 | 48.16+0.88
IDEAL-T (Ours) C64E 69.154-0.80 | 53.5240.82 | 47.40+£0.76 | 37.804-0.67 | 61.7040.73 | 48.06+0.78 | 61.891-0.81 | 47.86+0.85
Masked Soft k-Means [62] | ResNet-12 | 72.97+0.83 | 43.40+0.93 | 45.53+0.73 | 36.19+£0.75 | 67.07£0.72 | 47.32+0.88 | 62.65+0.83 | 41.95+0.85
PRWN [63] ResNet-12 | 75.2840.75 | 53.00£0.93 | 48.454-0.73 | 38.1440.69 | 67.91£0.72 | 49.894-0.84 | 63.4140.85 | 46.55+0.83
RNNP [13] ResNet-12 | 73.01£0.81 | 59.07+1.25 | 46.2940.74 | 37.0240.77 | 64.78+0.81 | 50.62+1.06 | 65.3640.89 | 51.8441.22
RapNet [12] ResNet-12 | 74.61£0.74 | 53.3540.93 | 47.36+0.76 | 36.8140.72 | 67.0940.72 | 50.2140.86 | 64.9140.81 | 46.4540.92
IDEAL-B (Ours) ResNet-12 | 80.9540.72 | 64.33+1.06 | 52.68+0.80 | 40.9140.76 | 71.3640.69 | 57.3540.91 | 71.7240.81 | 55.154-1.04
IDEAL-T (Ours) ResNet-12 | 80.4440.71 | 62.7940.96 | 53.48+0.76 | 40.9440.71 | 70.2040.70 | 55.7340.84 | 71.8440.80 | 53.56+0.91

5 EXPERIMENTS

In this section, we perform typical few-shot learning prob-
lem (noise-free) and open-world few-shot learning problem
to verify the efficacy of our method in. Then, we perform
ablation experiments to analyze the efficacy of different
modules and parameters. Moreover, we compare methods
on the union of base classes and novel classes to verify the
plasticity and stability in the open world.

5.1

In experiments, we adopt four standard few-shot clas-
sification datasets, including CIFAR-FS [64], FC-100 [65],
minilmagenet [19] and tieredlmagenet [62].

Experimental settings

5.1.1

To comprehensively verify the superiority of our method,
we compare our methods IDEAL-B (BiLSTM as intra-class

Compared Methods

calibration encoder) and IDEAL-T (Transformer as intra-
class calibration) with state-of-the-art typical FSL methods
modified semi-supervised FSL methods and advanced RFSL
methods. The state-of-the-art FSL methods are including
Proto Nets [20], Matching Nets [19], Relation Nets [21],
MAML [17], Deep Kernel Transfer (DKT) [59], FEAT [60],
S2M2 [61], CSS [32]. Two advanced robust FSL. methods,
i.e., RNNP [13] and RapNet [12], are set as baselines. We
also modify two semi-supervised FSL i.e., Masked Soft k-
Means [62] and PRWN [63] for the setting of OFSL. In
OFSL problem, since Masked Soft k-Means and PRWN are
originally proposed for semi-supervised few-shot learning,
we adjust them appropriately to adapt to the setting of
OFSL. We use support samples and query samples instead
of the union of labeled samples and unlabeled samples as
the dataset for an episode, which is the same setting as other
methods. At the same time, we take the rehearsal strategy
and deliberately add label noise to the support set of Dy, to
boost the robustness of these methods, which is the same



11

TABLE 3: Comparisons on OFSL tasks with varying noise rates of type II ID noise (5-way 5-shot, Acc.%).

Methods Backbone CIFAR-FS FC100 minilmagenet tieredImagenet
20% 40% 20% 40% 20% 40% 20% 40%
Proto Nets [20] C64E 64.2610.81 | 58.1740.84 | 45.1240.72 | 40.3240.72 | 59.5040.73 | 54.1040.78 | 57.7240.80 | 51.0310.84
Matching Nets [19] C64E 63.6510.78 | 57.3310.78 | 44.7610.69 | 40.2040.67 | 58.1640.71 | 52.5440.75 | 57.6140.80 | 51.994-0.80
Relation Nets [21] C64E 65.0240.78 | 58.1240.86 | 42.9440.72 | 39.0640.75 | 57.3840.73 | 51.4640.79 | 56.9440.81 | 50.3140.83
MAML [17] C64E 65.0310.81 | 58.8040.83 | 41.9940.72 | 37.2540.71 | 58.5740.74 | 51.1140.79 | 57.0240.82 | 50.584-0.86
DKT [59] C64E 62.3610.83 | 56.3040.85 | 44.9140.75 | 39.9540.69 | 58.0440.72 | 52.53%0.73 | 57.9940.80 | 51.1040.78
FEAT [60] C64E 67.7140.78 | 61.3540.86 | 44.8540.70 | 39.4940.66 | 60.1140.73 | 53.8740.78 | 61.7040.81 | 55.104-0.90
S2M2 [61] C64E 67.5740.79 | 61.1610.86 | 44.9310.73 | 40.6940.74 | 61.3540.75 | 54.1540.80 | 60.0440.82 | 54.1240.89
CSS [32] C64E 66.2940.80 | 60.454-0.89 | 45.0040.73 | 39.9840.69 | 60.5940.76 | 54.7040.84 | 60.2440.81 | 54.6440.89
Masked Soft k-Means [62] | C64E 62.4740.81 | 51.5140.87 | 44.14+0.70 | 37.9240.73 | 58.3940.71 | 51.04+0.78 | 57.134-0.80 | 46.14+0.85
PRWN [63] C64E 65.5910.83 | 55.2240.87 | 43.72+0.73 | 38.244-0.74 | 59.6140.76 | 51.69+0.79 | 58.124-0.78 | 49.54+0.81
RNNP [13] C64E 64.5740.87 | 57.1040.92 | 43.32+0.77 | 38.5140.76 | 59.6540.85 | 53.44+0.93 | 59.444-0.91 | 53.62+0.98
RapNet [12] C64E 64.9410.83 | 56.2440.82 | 45.37+0.74 | 39.9740.73 | 62.0240.85 | 52.31+0.76 | 57.434-0.84 | 49.90+0.81
IDEAL-B (Ours) C64E 70.6410.79 | 64.0440.83 | 47.90+0.72 | 42.3610.76 | 63.9540.67 | 56.99+0.80 | 62.884-0.83 | 56.34+0.86
IDEAL-T (Ours) C64E 70.904-0.76 | 63.1340.85 | 48.19+0.78 | 41.9840.76 | 63.2740.71 | 55.60+0.79 | 62.974-0.84 | 56.11+0.78
Masked Soft k-Means [62] | ResNet-12 | 66.78+£0.85 | 57.1240.93 | 47.1540.73 | 39.64+0.81 | 67.254:0.73 | 57.3540.82 | 62.18+0.83 | 52.094-0.85
PRWN [63] ResNet-12 | 76.58+0.75 | 65.48+0.88 | 46.7940.74 | 39.9940.74 | 68.28+0.69 | 57.7240.76 | 66.27+0.82 | 55.70£0.85
RNNP [13] ResNet-12 | 71.5040.81 | 63.88+£0.95 | 47.284-0.78 | 41.68+0.80 | 63.62+0.80 | 56.6040.91 | 64.5040.88 | 58.14+0.97
RapNet [12] ResNet-12 | 76.2740.73 | 65.94+0.83 | 50.404-0.71 | 41.96+0.76 | 68.77£0.71 | 60.8640.79 | 65.97+0.77 | 58.59£0.89
IDEAL-B (Ours) ResNet-12 | 81.2840.71 | 70.80+0.87 | 53.554-0.72 | 45.3240.71 | 71.90£0.68 | 66.034-0.79 | 71.9940.82 | 67.46+0.91
IDEAL-T (Ours) ResNet-12 | 81.7940.68 | 69.60+0.94 | 53.67+0.74 | 47.4240.82 | 72.6140.69 | 64.324+0.77 | 72.4240.80 | 65.0140.87

TABLE 4: Comparisons on OFSL tasks with varying noise rates of OOD noise (5-way 5-shot, Acc.%).

Methods Backbone CIFAR-FS+minilmagenet | FC100+minilmagenet | minilmagenet+CIFAR-FS | tieredImagenet+CIFAR-FS
20% 40% 20% 40% 20% 40% 20% 40%

Proto Nets [20] C64E 64.484+0.79 | 58.62+0.83 | 44.8840.73 | 40.03+0.69 | 61.51+0.68 | 55.53+0.70 | 57.584-0.82 | 53.144-0.84
Matching Nets [19] C64E 63.6410.80 | 58.17+0.81 | 45.354-0.72 | 41.62+0.69 | 59.53+0.73 | 55.94+0.77 | 58.484-0.81 | 54.624-0.82
Relation Nets [21] C64E 65.0240.82 | 58.69+0.88 | 41.454-0.72 | 36.92+0.71 | 58.90+0.73 | 53.90+0.72 | 57.684-0.75 | 53.724-0.78
MAML [17] C64E 65.011+0.83 | 57.99+0.84 | 42.524-0.71 | 37.76+0.69 | 59.08+0.74 | 52.75+0.75 | 57.414-0.80 | 51.214-0.80
DKT [59] C64E 63.33+0.81 | 56.86+0.87 | 45.354-0.74 | 40.95+0.71 | 58.24+0.68 | 53.96+0.73 | 58.544-0.74 | 54.961-0.80
FEAT [60] C64E 67.7240.78 | 60.82+0.87 | 43.2640.69 | 37.63+0.70 | 61.43+0.70 | 56.16+0.74 | 61.394-0.78 | 56.631-0.81
S2M2 [61] C64E 66.8310.79 | 59.74+0.84 | 43.9640.72 | 39.58+0.74 | 62.69+0.70 | 57.07+0.72 | 61.534-0.78 | 57.101-0.84
CSS [32] C64E 66.37+0.79 | 60.74+0.90 | 44.184-0.72 | 39.14+0.72 | 61.90+0.71 | 56.85+0.73 | 61.654-0.81 | 56.994-0.82
Masked Soft k-Means [62] | C64E 62.7040.82 | 52.24+0.86 | 44.7040.72 | 38.90£0.74 | 58.87+0.68 | 49.96+0.74 | 57.8840.81 | 46.611-0.84
PRWN [63] C64E 65.614+0.80 | 55.13+£0.92 | 44.5640.74 | 39.31£0.74 | 60.06+0.68 | 52.59+0.73 | 58.5440.79 | 51.214-0.81
RNNP [13] C64E 63.76+0.90 | 55.99£0.95 | 40.8340.73 | 34.56+0.74 | 60.19£0.81 | 56.71£0.81 | 60.2630.90 | 56.494-0.89
RapNet [12] C64E 65.561+0.82 | 55.68+0.85 | 45.3340.72 | 40.50£0.71 | 56.2840.80 | 52.54+0.71 | 57.9240.85 | 49.724-0.83
IDEAL-B (Ours) C64E 71.2240.74 | 64.92£0.85 | 47.4340.74 | 42.35+0.76 | 64.37+0.72 | 57.36+0.78 | 62.974+0.80 | 57.974-0.85
IDEAL-T (Ours) C64E 71.3940.75 | 64.30£0.82 | 47.5040.72 | 42.02+0.69 | 63.83+0.70 | 57.97+0.74 | 63.524-0.80 | 57.6740.79
Masked Soft k-Means [62] | ResNet-12 | 68.15+£0.89 | 58.254:0.91 | 47.85+0.72 | 40.514-0.79 | 68.05£0.71 | 56.884-0.81 | 63.18+0.84 | 53.98+0.82
PRWN [63] ResNet-12 | 77.09£0.74 | 67.7040.86 | 48.51£0.72 | 42.3740.72 | 68.9240.70 | 61.0140.74 | 66.51+£0.84 | 58.16+0.88
RNNP [13] ResNet-12 | 70.3040.90 | 60.104-0.97 | 45.33+0.78 | 37.9240.77 | 64.1840.79 | 59.444-0.81 | 63.70£0.86 | 58.24+0.88
RapNet [12] ResNet-12 | 74.38+0.77 | 66.2630.87 | 50.05+0.72 | 41.6240.74 | 68.98+0.71 | 61.0440.75 | 66.45+£0.78 | 58.96+0.86
IDEAL-B (Ours) ResNet-12 | 81.81£0.69 | 74.71£0.80 | 53.2040.72 | 44.224+0.73 | 73.04+0.66 | 65.5940.78 | 73.60+0.78 | 68.93+0.87
IDEAL-T (Ours) ResNet-12 | 81.83+0.67 | 72.28+0.86 | 52.904+0.74 | 47.354+0.73 | 73.80+0.66 | 67.7740.76 | 73.214+0.83 | 67.31+0.85

setting as IDEAL and RapNet.

5.1.2

For a fair comparison, we implement all methods by Py-
Torch and the code framework proposed in [2]. We adopt
two backbones in the experiments, including the four-block-
based ConvNet model (C64E) [2] and ResNet-12 [66]. In
C64E, each block is comprised of 64-channel 3 x 3 convolu-
tion, batch normalization, ReLU [67] nonlinearity, and 2 x 2
max-pooling. The feature embedding dimension is set to
1600. The Adam optimizer [68] is used by all methods to
optimize parameters. The learning rate is set to 10~ for all
methods. In IDEAL, g¢ and h, are implemented by C64E
backbone. 7 in Eq.(6) is set to 0.1 and T" in Eq.(23) is set
to 0.1. In Eq.(7) and Eq.(8), v is set to 0.9 and S is set to
0.1. In Eq.(29), 7 is set to 0.1 and ~y is set to 0.1. For all
methods, in the meta-training stage, the maximum number
of training episodes is set to 40000. In the inference stage, all

Implementation Details

experimental results are averaged accuracy of 600 randomly
generated test episodes with 95% confidence intervals.

5.1.3 Datasets

CIFAR-FS [64] is a few-shot dataset created by dividing the
100 classes of CIFAR-100 into 64 base classes, 16 validation
classes, and 20 novel test classes.

FC100 [65] is built based on CIFAR100. It contains 100
object classes which have been grouped into 20 superclasses.
It uses 60 classes belonging to 12 superclasses for training,
20 classes belonging to four superclasses for validation, and
20 classes belonging to the rest four superclasses for the test.

minilmageNet [19] is commonly used in evaluating few-
shot classification algorithms for object recognition. It con-
sists of a subset of 100 classes taken from the ImageNet
dataset and contains 600 images for each class.

tieredlmageNet [62] is a larger few-shot dataset and its
categories are selected with hierarchical structure to split



Class A:
scoreboard
Intra-class weight: 0.254

Maximum inter-class
245 (Class A)

Intra-class weight: 0.276
Maximum inter-class
N weight: 0.275 (Class A)

Intra-class weight: 0.307
Maximun inter-class
weight: 0.226 (Class A)

Intra-class weight: 0.158
Maximum inter-class
weight: 0.160 (Class A)

Intra-class weight: 0.005
Maximum inter-class
weight: 0.065 (Class B

[
i
|
'
1
|
1
1
'
'

i
| ClassB:
I lion, king of
| beasts,

| Panthera leo
' Intra-class weight: 0.290
1 Maximum inter-class

a
Intra-class weight: 0.315
Maximum inter-class

Intra-class weight: 0.113

Intra-class weigh
Maximum inter-class i

Maximum inter-class

r
i

1

| ClassCt
| theater curtain,
! theatre curtain
1 =
1 Intra-class weight:

' Maximum inter-class

Intra-class weight: 0.243

Intra-class weight: 0.289
i Maximum inter-class

Intra-class weight: 0.181
Maximum inter-class

Intra-class weight: 0.091
Maximum inter-class

Maximum inter-class
Cl

weight: 0.190 (ClassC)  weight: 0144 (ClassC) _ weight: 0.074 (Class C)

Fig. 5: Intra-class weight and maximum inter-class weight of
each sample in the studied OFSL task with type I ID noise. For
each support sample, the class with the maximum inter-class
weight and its corresponding value are given. The last column
denotes the type I ID noise.

I
i

1

| ClassA:

| theater curtain,
: theatre curtain
1
'

oL
Intra-class weight: 0.030 11
Maximum inter-class 11

L cgm o
Intra-class weight: 0184 Intra-class weight: 0278 Intra-class weight: 0.190
Maximum inter-class Maximum inter-class Maximum inter-class

weight: 0.231 (Class A) 10216 (ClassA)  weight: 0,004 (Class A)

Intra-class weight: 0.318
Maximum inter-class
\ weight: 0.411 (Class A)

{ Il
| '
i ClassB: '
I African '
i
'
i
'
i
i
|

hunting dog

Intra-class weight: 0.178 1 Intra-class weight: 0.043
Maximum inter-class Maximum inter-class Maximum inter-class
v weight: 0273 (Class B)  weight: 0.250 (Class B)  weight: 0.231 (Class B)

Intra-class weight: 0301 Intra-class weight: 0.142
Maximum inter-class
weight: 0.159 (Class B)

Intra-class weight: 0.336

'
1 Intraclass weight: 0.172
1 Maximum inter-class 1

Intra-class weight: 0.213
Maximum inter-class
weight: 0.248 (Class C)

Intra-class weight: 0.168
Maximun inter-class
N weight: 0.325 (Class C)

Intra-class weight: 0.243
Maximum inter-class
weight: 0.201 (Class C)

Intra-class weight: 0.204
Maximum inter-class
weight: 0.109 (Class C)

Fig. 6: Intra-class weight and maximum inter-class weight of
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base and novel datasets semantically. We follow the split
introduced in [62] with base set of 20 superclasses (351
classes), validation set of 6 superclasses (97 classes) and
novel set of 8 superclasses (160 classes). Each class contains
1281 images on average.

5.2 Typical Few-Shot Learning Problems

We conduct typical FSL experiments to demonstrate the
universality of IDEAL in clean datasets. Average accuracies
and standard deviations of different algorithms for 5-way
5-shot FSL tasks are given in Table 1.

In Table 1, for each comparison on each backbone, the
best result among IDEAL, Masked Soft k-Means, PRWN,
RNNP and RapNet is highlighted in bold, and the best
result among all algorithms is underlined. From Table 1,
we can find that in all typical FSL tasks, IDEAL can achieve
the best classification performance. The results indicate that
our IDEAL can significantly outperform the compared FSL
methods in typical few-shot learning problems.

5.3 Open-World Few-Shot Learning Problems

In the open-world, due to unknown sources of data, dif-
ferent types of noise might exist in data which make the
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Fig. 7: Intra-class weight and maximum inter-class weight of
each sample in the studied OFSL task with OOD noise. For
each support sample, the class with the maximum inter-class
weight and its corresponding value are given. The last column
denotes the OOD noise from CIFAR-FS dataset.

FSL problem more difficult. In this section, we compare our
methods in OFSL settings.

5.3.1 Noise Settings

In the experiments, we set open-world noisy few-shot sce-
narios built by replacing some images with type I, type II
and OOD noise while keeping the labels and the number of
images per class unchanged. Type I ID noise is produced via
replacing the raw sample with a sample from other classes
in the current task, which severely disturbs both distribu-
tions of the two classes. Type II ID noise is produced by
replacing the raw sample with a sample from other classes
in known datasets except for classes in the current task,
which disturbs the distribution of the current corrupted
class. OOD noise is built by replacing some training samples
with an external dataset which leads to unforeseen shift of
feature and label distribution.

5.3.2 Experimental Analysis

For the 5-way 5-shot problem, Table 2, 3 and Table 4 respec-
tively demonstrate the performance of compared methods
faced with various noise rates of type I ID noise, type
I ID noise and OOD noise. The second row of tables
represents the noise rate. Since the data from unknown do-
mains might not be clearly defined, in this paper, we adopt
external datasets to imitate unknown domains. CIFAR-
FS+minilmagenet in the second column represents that OOD
noise is a sample from minilmageNet while replacing the
sample in CIFAR-FS. For each comparison, the best result
is underlined, and the best result among IDEAL, Masked
Soft k-Means, PRWN, RNNP and RapNet is highlighted in
bold. From Tables 2 and 3, we can find that models are
more susceptible to type I ID noise than type II noise, which
may be because type I noise destroys the decision boundary
between the two classes. At the same time, with the increase
of the number of noise, the performances of the existing
methods become significantly worse in the face of type I
noise. However, our IDEAL considering global correlations
among all support samples still maintains superior and
stable performance faced with two kinds of ID noise and
gets rid of the interference of confused representations.
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TABLE 5: Ablation results on OFSL tasks under different cases on minilmageNet dataset (5-way 5-shot, Acc.%).

Method Type 11D Type 1 ID OOD
20% 40% 20% 40% 20% 40%

(a) w/o instance-wise calibration
e case a1: without intra-class calibration 49.714+0.80 34.341+0.85 48.744+0.80 42.4240.79 48.86+0.81 42.86+0.79
e case ao: without inter-class calibration 60.5410.70 49.13+0.87 63.8040.72 55.46+0.81 62.3640.71 56.5640.76
(b) w/0 metric-wise calibration
o case by : without cos(ge (x)) 57.36+0.70 | 45.10+0.77 | 61.7040.73 | 54.09+£0.80 | 62.03+0.74 | 55.5640.81
o case by: without cos(h, (x)) 59.29+0.71 | 49.53+0.88 | 61.404+0.74 | 55.37+0.78 | 62.10+0.72 | 55.824+0.77
o case b3: using Euclidean distance 61.29+0.66 | 48.92+0.79 | 63.214+0.70 | 56.90+0.76 | 64.23+0.71 | 56.914+0.77
(c) w/o different losses
e case c1: without both losses 61.41+0.75 | 48.68+0.85 | 62.724+0.74 | 55.84+0.79 | 63.71+0.69 | 56.604+0.75
e case c1: without intra-class noise loss 61.43+£0.75 | 49.15+0.84 | 63.584+0.73 | 56.80+£0.80 | 64.03+0.70 | 56.644+0.80
e case c1: without inter-class noise loss 61.42+0.75 | 49.49+0.89 | 63.164+0.75 | 56.88+0.82 | 64.25+0.72 | 56.814+0.80
our model 61.54+0.79 | 49.874+0.83 | 63.95+0.67 | 56.99+0.80 | 64.37+0.72 | 57.36+0.78

Table 4 displays the experimental result with OOD noise
which is more consistent with the real-world environment.
IDEAL outperforms prior methods with a large margin in
all cases. Therefore, our method is more robust to noise in
the open world.

5.4 Ablation Study and Model Analysis

In this section, we take IDEAL-B for example to perform
ablation experiments to analyze the efficacy of different
modules and parameters.

5.4.1 Effectiveness of Instance-Wise Calibration and
Metric-Wise Calibration

For a comprehensive understanding of our model, we fur-
ther design five cases to evaluate each module in 5-way
5-shot open-world settings. We also evaluate each module
with three kinds of noise, i.e., type I ID, type II ID and
OOD noise. For each noise situation, we also add 2 degrees
of noise, i.e, 20% and 40% noise rate. The five cases are 1)
case a1, remove the intra-class calibration term in Eq.(7) and
Eq.(8), 2) case az, remove the inter-class calibration term in
Eq.(7) and Eq.(8), 3) case b;, remove the first-term in the
EC similarity of Eq.(24), 4) case by, remove the second-term
in the EC similarity of Eq.(24) and 5) case b3, use negative
average Euclidean distance to replace the average cosine
similarity induced as EC similarity. For all cases, C64E is
adopted as the backbone.

Performance drops are observed in Table 5 when any
of the instance-wise and metric-wise calibration modules
are removed or replaced. These experimental results verify
that each module in IDEAL is essential. In cases a; and as,
the combination of intra-class and inter-class calibration can
improve the robustness of the model. In cases by,b; and
b3, the proposed EC similarity is effective to calibrate la-
bel confidences. Simply replacing average Cosine similarity
with negative average Euclidean distance seriously reduces
the model performance due to the lack of properties in EC
similarity. In the meantime, we find the performance of the
model only using intra-class calibration might be higher
than that of the model only using inter-class calibration.
This is caused by two reasons: 1) Intra-class calibration is ex-
ecuted by the pre-trained contrastive network, while inter-
class calibration is executed by the meta network, which
requires being trained from scratch in the meta-training
process. Therefore, the parameters of the meta network may

fluctuate frequently, which will introduce the uncertainty of
optimization and influence the final performance. 2) Since
samples are rare, the process of clustering may bring some
uncertainty and affect the model performance.

However, although the phenomenon might happen, it
does not mean that the intra-class calibration is trivial. In
fact, inter-class calibration considers the global correlation
among all support samples in a whole task and distinctively
tackles these different types of noise, which is ignored by
intra-class calibration. To better illustrate the effect of inter-
class calibration in dealing with different types of noise, we
conduct three kinds of case studies which are shown in Fig-
ures 5, 6 and 7. The known domain is from minilmageNet.
The last column in each Figure denotes noise. For each
sample, the top line represents the intra-class weight of
annotated class while the bottom two lines represent the
maximum inter-class weight in all classes and the class with
the maximum inter-class weight. As displayed in Figure
5, when handling type I ID noise, inter-class calibration
can not only correctly refer to the potential correct class
according to the class with the maximum inter-class weight,
but also ameliorate the class prototype with the corrected
noise. From Figures 6 and 7, when handling type II ID
noise and OOD noise, the maximum inter-class weights for
all noise are smaller than 0.025. At the same time, each
correct support samples have a much higher weight, which
demonstrates that inter-class calibration can effectively eval-
uate the inter-class weights of support samples according to
their contributions to each cluster to filter out isolated noise.
Therefore, inter-class calibration and intra-class calibration
can supplement each other to further promote the robust-
ness of the model.

5.4.2 Effectiveness of Intra-Class Noise Loss and Inter-
Class Noise Loss

In order to better demonstrate the importance of intra-class
noise loss and inter-class noise loss, we conduct further
ablation studies to compare the proposed IDEAL with three
versions: without intra-class noise loss, without inter-class
noise loss and without both losses. The evaluations are
conducted on 5-way 5-shot open-world settings on the
CIFAR-FS dataset. Table 5 tabulates the experimental results
of different versions of IDEAL, and the best performance on
each comparison is highlighted in bold. From Table 5, we
can find that both intra-class noise loss and inter-class noise
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loss are beneficial to improving the performance, which
proves the validity of the proposed two losses.

5.4.3 Effectiveness of n and ~y

In this part, we explore the effectiveness of the hyper-
parameters 1 and y. We compare the performance of IDEAL
with different values of 7 and ~y on the four datasets when
facing type I ID, type II ID and OOD noise. The backbone
C64E is adopted in the experiments. Fig. 8 illustrates the
experimental results of IDEAL with different values of 7,
and Fig. 9 demonstrates the experimental results of IDEAL
with different values of ~.

From Figures 8 and 9, we can find that: 1) IDEAL has
stable performances with a wide range of hyperparameter
values on all four datasets. 2) The performance of the model
is hardly influenced by the changes of 7. 3) In general, when
the value of 7 is between 0.1 and 0.3, the model can achieve
better performance. These findings further demonstrate the
robustness of the proposed IDEAL in practical application.

5.5 Test on the Union of Base Classes and Novel
Classes

We also take 20% noise rate for example to test the perfor-
mance of our proposed IDEAL against compared method
on the union of base classes and novel classes. Average ac-
curacies and standard deviations of different algorithms for
OFSL tasks with type I ID noise, type II ID noise and OOD
noise are given in Table 6. In Table 6, for each comparison on
each backbone, the best result among IDEAL, Masked Soft
k-Means, PRWN, RNNP and RapNet is highlighted in bold,
and the best result among all algorithms is underlined. From
Table 6, we can find that in all cases, both IDEAL-B and
IDEAL-T can achieve the best classification performance
compared with other methods. The results indicate that our

IDEAL is superior to the compared few-shot classification
methods and achieves plasticity and stability in the open
world.

6 CONCLUSION

In this paper, we propose a novel instance-wise and metric-
wise calibration framework (IDEAL) to address the new
open-world few-shot learning problem. IDEAL is based
on a dual-networks structure. Each network can remedy
each other to boost both the feature and label representa-
tion capability of the model. In instance-wise calibration,
IDEAL leverages intra-class and inter-class sample weights
extracted by both networks to obtain rectified prototypes. In
metric-wise calibration, we use the proposed EC similarity
with fused prototype information to better evaluate the
label confidences of query samples. Various experiments
demonstrate that our method performs robustly in systemic
label-noise few-shot scenarios.
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APPENDIX A
THE PRE-TRAINING OF CONTRASTIVE NETWORK

The contrastive network g¢ can be trained with conditional
loss and contrastive loss. The contrastive loss in SimSiam
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[29] is introduced and other contrastive loss is equally
acceptable. Given an input image z, two augmented views
x’ and x” are generated according to random augmentation
methods. The two views are processed by an encoder net-
work consisting of the contrastive feature extractor g and
a projection MLP head o. A prediction MLP head, denoted
as J, transforms the output of one view and matches it to
the other view. Then, the negative cosine similarity of two
embedding vectors is obtained:

o Oege@)) o olge @)

Le () =~ 1510 tge @), P8 d<||a<gs<x">>2>
_ S(olge @) o olge (@)
16 (o (ge (@))[l, =°F° d(||o<gg<x'>>|(232)’

where ||-||, is l;-norm and stopgrad is the stop-gradient
operation [29].

In the meantime, a conditional loss is utilized to guide
the learning of contrastive network, which is guided by the
feature extractor fy [32]:

Combining contrastive loss with conditional loss, the
objective function to optimize the contrastive network can
be obtained by:

fo ()
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e (x)
lge ()1,
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E
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Lpretrain (1') [LC (xl) + ’VLO(xl)]

where 7 is a positive constant trading off the importance of
contrastive loss and the conditional loss.

APPENDIX B
LIMITATIONS OF THE PROPOSED METHOD

The open-world learning is a tremendously difficult open
problem, and essential work needs to be done in this
direction. In this paper, we mainly focus on the scenario
that there are noisy samples from known classes, unknown
classes in the known domain, and unknown domains in
the support set, which is indeed an open-world scenario.
Then, we propose an efficient method with instance-wise
calibration and metric-wise calibration to identify the noise
from support samples and enhance the robustness of models
in the open world. However, when there exists an unknown
class in the query set or in both the query set and support
set, our method might not be able to operate effectively. Our
method could not be updated flexibly when new classes are
assumed to appear incremental. Moreover, when there exists
a domain shift between support samples and query samples,
the proposed method cannot effectively align two spaces
and classify query samples. In future work, we will further
delve into the robustness, generalization and discrimination
ability of the model in various open-world scenarios. We
will also explore the dynamic update of the model with the
incremental addition of unknown classes for wider open-
world applications.
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